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Abstract: The manipulation of the immune system through the administration of a vaccine 

to direct an effective and long-lasting immune response against breast cancer (BC) cells is an 

attractive strategy. Vaccines would have several theoretical advantages over standard therapies, 

including low toxicities, high specificity, and long-lasting efficacy due to the establishment of 

immunological memory. However, BC vaccines have failed to demonstrate meaningful results 

in clinical trials so far. This reflects the intrinsic difficulty in breaking the complex immune-

escaping mechanisms developed by cancer cells. New vaccines should be able to elicit complex 

immunologic response involving multiple immune effectors such as cytotoxic and antibody-

secreting B cells, innate immunity effectors, and memory cells. Moreover, especially in patients 

with large tumor burdens and metastatic disease, combining vaccines with other strategies, such 

as systemic BC therapies, passive immunotherapy, or immunomodulatory agents, could increase 

the effectiveness of each approach. Here, we review recent advances in BC vaccines, focusing 

on suitable targets and innovative strategies. We report results of most recent trials investigating 

active immunotherapy in BC and provide possible future perspectives in this field of research.
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Introduction
Recently, advances in early diagnosis and more effective treatments have reduced the 

mortality rate due to breast cancer (BC).1 However, despite this progress, BC remains a 

leading cause of death in the female population worldwide.2 In this scenario, manipulat-

ing the immune system to direct an effective and long-term immune response against 

BC cells through the administration of a vaccine is an attractive strategy. Tumor vac-

cination would have several theoretical advantages over standard therapies. First, the 

ideal tumor vaccine would induce potent and durable immune reactions against a broad 

spectrum of tumor antigens. It could be easily administered and manufactured, with 

modest side effects typical of conventional chemotherapies. Moreover, it would prevent 

further tumor recurrences, due to the establishment of persistent immune memory. 

At present, however, active immunotherapeutic strategies against cancer have failed 

to fulfill the above expectations in clinical trials.3 This reflects the intrinsic difficulty 

in finding optimal targets for a cancer vaccine, the most effective type of vaccination, 

route of  administration, and the most immunologically favorable setting of disease 

(eg, low tumor burden, not heavily pretreated patients). Most importantly, it reflects 

the difficulty in breaking the complex immune-escaping mechanisms developed by 

cancer cells.4 The aim of this review is to summarize recent advances in BC active 
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immunotherapy, to address recent results from clinical  trials, 

and to provide possible future perspectives in this field of 

research.

Targets and strategies of BC 
vaccines
It has been well established that the immune system plays 

a role in controlling tumor growth, and adaptive immunity 

is the main mediator of “spontaneous” regression of certain 

types of cancers.5,6 The immune system has the ability to 

recognize several types of antigens expressed on tumor cell 

surfaces, namely the tumor-associated antigens (TAAs).7 

TAAs are presented to immune system effectors such as 

T-cells by the tumor itself, through the major histocompat-

ibility complex (MHC) or, more likely, by antigen present-

ing cells (APCs), in particular macrophages and dendritic 

cells (DCs).7 These cells are essential in processing antigens 

into immunogenic peptides and presenting them to naive 

T-cells through the MHC complex. Through a complex and 

regulated system of co-activator and inhibitory molecules 

expressed on the cell surface, these cells play an essential role 

in priming T lymphocytes and activating an immunogenic 

response against specific targets.8 The presence of tumor-

infiltrating lymphocytes has been correlated with better 

prognosis in several types of cancers.9,10 However, tumor cells 

often develop the ability to circumvent the surveillance of the 

immune system.11 In the tumor microenvironment, molecules 

such as vascular endothelial growth factor, transforming 

growth factor (TGF)-β, and interleukins are abundant and 

both actively downregulate the immune function and pro-

mote tumor progression, invasion, and metastasis.12 In addi-

tion, tumor cells can directly downregulate T-cell function 

through expression of transmembrane inhibitory molecules 

such as FasL or B7-H1/PD-L1 or, indirectly, by promot-

ing functionally suppressive CD4+FoxP3+ T  lymphocyte 

(TReg) function.13,14 Finally, cancer cells can modulate 

expression or mask TAAs, reducing their availability and 

presentation to immune effectors.15 All these mechanisms 

can therefore lead to altered DC and T-cell function, and, 

as final result, to impaired immune response against tumor 

cells. Immune-escaping mechanisms are particularly active 

in epithelial cancers such as BC.16 However, some degree 

of immune response against TAAs can be demonstrated in 

BC patients.17–19 This has prompted researchers to develop 

active immunotherapies to therapeutically amplify these 

weak responses against known immunogenic BC antigens. 

In fact, the aim of an effective therapeutic vaccine is to break 

peripheral tolerance and activate low-affinity T-cells that 

were not eliminated during selection in thymus.20 A number 

of breast TAAs have been recognized and described so 

far (Table 1). Among them, human epithelial growth fac-

tor receptor 2 (HER2), carbohydrate antigens, telomerase 

reverse transcriptase (hTERT), and mucin-1 (MUC-1) have 

received the greatest attention for vaccine formulations7 

and have been tested in clinical trials. In order to produce 

an effective vaccine, an antigen or a pool of antigens (as for 

whole-tumor-cell vaccines) should be delivered through an 

appropriate formulation. Activation of the immune system 

could be enhanced by including adjuvant compounds, and 

appropriate monitoring techniques should be prompted to 

assess the immunologic response.21 Recently, new tech-

nologies such as the use of nanoparticles and liposome 

 formulations, which may improve efficacy of vaccines have 

received great attention, and preclinical studies with interest-

ing results have been published.22–24 Indeed, various vaccine 

formulations have been tested so far, but none of these was 

shown to be superior in all situations. Distinct vaccination 

platforms engage different aspects of the antitumor immune 

response and each has its own pros and cons, as briefly sum-

marized in Table 2.

Peptide-based vaccination
Peptide-based vaccines aim at inducing immune responses 

(including antibodies, cytotoxic T lymphocytes [CTLs], and 

helper T-cells) using antigenic epitopes derived from TAAs. 

Table 1 Main breast cancer TAAs

Target Description

Carcinoembryonic  
antigen

Glycoprotein involved in cell adhesion, 
normally expressed during fetal development

Human epithelial  
growth factor  
receptor 2

Growth factor receptor belonging to human 
epithelial growth factor receptor family 
Overexpressed in 20%–30% of breast cancer 
cells, correlates with adverse prognosis

MUC-1 Membrane glycoprotein involved in 
immunologic and cell signaling functions 
Overexpressed in 70% of breast cancers

hTeRT Component of the telomerase complex,  
a ribonucleoprotein that maintain chromosome 
integrity during cell proliferation and division

p53 Tumor suppressor protein, involved in cell 
cycle regulation and DNA damage repair 
Mutated in 20% of breast cancers

Mammaglobin-A Glycoprotein overexpressed in 80%  
of metastatic breast cancers

Cancer testis antigens  
(NY-eso-1, MAGe,  
BAGe, and GAGe)

Proteins expressed in normal germ cells of the 
testis and embryonic ovaries and in certain 
types of cancer

Abbreviations: TAAs, tumor-associated antigens; hTeRT, telomerase reverse 
transcriptase; MUC-1, mucin-1.
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Many of the first cancer vaccine strategies focused on 

 inducing tumor-specific CD8+ cells with MHC class I 

restricted short peptides.25–27 It is now clear that these CD8+ 

T-cell responses are typically weak and short-lived.25,28 Fur-

ther studies have clarified that triggering the CD4+ T-cell 

response is critical for maximizing tumor immunity, as it 

both optimizes the CD8+ T-cell response and supports the 

humoral antitumor immune response.29 Thus, researchers 

have focused on studying peptide-based vaccines that are 

able to trigger both CD4+ and CD8+ responses, using longer 

peptides or mixtures of epitopes.30 Peptide vaccines have 

several potential advantages, which include easy manu-

facturing, easily evaluable immunological response, and 

low expected toxicities. These advantages have made the 

peptide-based vaccination widely studied and employed in 

clinical trials. However, this strategy presents some objec-

tive limitations. First, to be effective, peptide vaccines often 

require co-administration of an immunological adjuvant. 

Adjuvants play an important role in favoring recruitment 

and efficient stimulation of immune effectors. Identification 

of an even more efficient adjuvant for a given vaccine is 

crucial for the effectiveness of the formulation and has 

been the object of intense research. Second, most of the 

peptide-based vaccines tested are restricted to HLA-A2. 

This limits the number of potentially benefiting patients. 

Third, although easily monitored, immune response is 

directed against one or a few epitopes, possibly reducing 

the effectiveness of response and favoring mechanisms of 

immune escape. Finally, we should consider population- 

and patient-specific variability in antigen processing and 

presentation, which could affect the effectiveness of such 

a strategy.31

Table 2 Current vaccine platforms

Vaccine platform Strengths Possible limitations

Peptide-based vaccines easily produced and delivered 
Low toxicities 
easy to monitor immunologic response

Able to elicit mainly one compartment of immunological  
response (cytotoxic or humoral) 
Require boosts inoculation to maintain immunological memory 
HLA-restricted 
Require suitable adjuvant 
Response restricted to one or few epitopes

DC-based vaccines Not HLA restricted 
Capable to elicit immunological memory,  
humoral and cytotoxic response

Technically challenging 
Requires expansion, maturation, and activation of DCs

DNA-based vaccines Can be produced on larger scales 
Can elicit both humoral and cytotoxic  
compartments

Risk of toxicities 
Low efficiency of naked DNA or plasmids 
Difficulties in finding suitable vectors

whole cell-based vaccines Can elicit a response against broad  
spectrum of antigens 
Not HLA-restricted

Difficult to monitor response 
Risk of toxicities and autoimmunity 
Requires cell manipulation to be immunogenic

Abbreviations: HLA, human leukocyte antigen; DC, dendritic cell.

DNA-based vaccination
The principle of this approach is based on the  assumption 

that the DNA encoding for a given TAA can be taken by 

APCs, translated into protein, and finally processed for 

presentation. DNA can be delivered naked or complexed 

with other molecules. Frequently, the most used vectors are 

viruses that are able to efficiently transfect target cells.32,33 

Recently, new technologies such as nanoparticles and lipo-

some preparations have been successfully employed to deliver 

DNA vaccines.34–36 A large body of evidence supports the 

idea that stimulating a coordinated immune response, involv-

ing cellular, humoral, and innate immune effectors (natural 

killer cells and macrophages), most effectively mediates 

tumor rejection.37,38 DNA vaccines, because of their unique 

mechanisms of action, could stimulate a more “physiologic” 

immune response against antigens and could be produced 

on a larger scale. However, finding an effective vector can 

be challenging.

Dendritic cells-based vaccination
DCs are the most important APCs. They naturally express 

high levels of MHC molecules, co-stimulatory proteins, 

and cytokines.39,40 Autologous DCs can be modified by 

fusion with cancer cells by pulsing with peptides or by 

transfection to express tumor antigens.41 DC vaccination 

represents one of the most intriguing platforms in cancer 

vaccines. In fact, DCs are able to stimulate both class I and 

class II responses and can be further modified in order to 

co-express co-stimulatory molecules, and responses can 

be directed against multiple targets. This type of platform 

has been successfully employed and approved for clinical 

use in castration-resistant prostate cancer.42,43 However, this 
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vaccine platform remains  technically challenging due to the 

uncertainty related to the optimal route of administration and 

expansion, maturation, and/or activation of DC cells, which 

is not easily achievable ex vivo and, as a result, this limits 

larger scale manufacturing.

whole cells-based vaccination
Another potential approach is immunizing the patient 

with whole tumor cells, derived from the patient herself 

(autologous) or from cell-line cultures (allogeneic). These 

vaccines have been shown to induce antigen-specific T-cell 

responses. However, more frequently, tumor cells act as 

antigenic pool for in vivo or ex vivo APCs presentation. 

To enhance immunological response, tumor cells can be 

genetically modified to express co-stimulatory molecules 

or cytokines.44 Theoretical advantages of such approach 

comprise providing a pool of tumor antigens, generat-

ing immune responses to more than one antigen, and 

thereby possibly overcoming the tumor antigen loss.45 

Moreover, this could lead to a more “complex” response, 

involving both CD4+ and CD8+ T-cells, against different 

antigens. Potential drawbacks may be the triggering of 

autoimmunity and difficulties in monitoring the conse-

quent immunologic response that may be directed against 

unknown TAAs.46

Anti-HER2 vaccines
HER2 is a protein receptor with tyrosine kinase activity 

belonging to the human epidermal growth factor receptor 

family overexpressed in 25%–30% of BC.47 HER2 is effec-

tively targeted by a number of new-generation therapies, 

such as the monoclonal antibodies trastuzumab, pertuzumab, 

or T-DM1,48–50 and small tyrosine kinase inhibitors such as 

Lapatinib, Neratinib, and Afatinib.51–53 HER2 is a suitable 

target for BC vaccines, and several investigations have shown 

that some patients develop spontaneous anti-HER2-specific 

immunity with high levels of both cellular and humoral 

response.17,54

The largest body of data resulting from anti-HER2 vac-

cinations derives from clinical trials employing peptide-based 

vaccines in different clinical settings. The most studied 

HER2-derived peptide in clinical trials is E75 (HER2 amino 

acids [aa] 369–377) derived from the extracellular domain 

of HER2 and characterized by HLA-A2 restriction.55 In the 

initial studies, E75 was demonstrated to be safe and capable 

of inducing peptide-specific CD8+ response. The majority of 

patients enrolled in these pivotal studies had breast or ovarian 

cancer and were vaccinated with  increasing doses of vaccine 

administered monthly, with up to six immunizations.17,25,26,56,57 

In a retrospective analysis aimed at evaluating long-term 

outcome of BC patients enrolled in these early trials, it was 

shown that 21 out of 52 (40%) identified patients were alive at 

the time of analysis (median follow-up [FU] of 112 months).58 

Six out of eight (75%) evaluable patients had persistent 

T-cell immunity versus immunizing HER2 peptides. More-

over, seven out of eight evaluable patients (88%) developed 

 T-cell-specific immunity against HER2 epitopes other than the 

one used for immunization, likely due to epitope spreading. 

These data showed that E75 was able to induce effective and 

long-lasting immunologic responses. Given the encouraging 

results, E75 was tested in two larger Phase II clinical trials in 

an adjuvant setting.59 A total of 195 women with HER2 posi-

tive (with score $1 by immunohistochemistry) were included 

(100 lymph-node positive, 95 lymph-node negative) after 

completion of a standard course of surgery, chemotherapy, and 

radiotherapy.60 The final results of this study have been very 

recently reported.61 The vaccine was administered with gran-

ulocyte-macrophage colony-stimulating factor (GM-CSF) for 

up to six immunizations, and 49% of patients received booster 

inoculations. At 5 years, the disease-free survival (DFS) rate 

for vaccinated patients was 89.7% versus 80.2% for controls 

(P=0.08).62 Although not statistically significant, vaccination 

was associated with a 48% reduction of relative risk of recur-

rence. Interestingly, among the node-positive population, 

benefits of vaccination were shown to be larger. In fact, the 

24-month DFS rate was 90.2% for vaccinated patients and 

79.1% for controls (P=0.13), with a relative reduction of risk 

for recurrence of 53%. Interestingly, patients expressing low 

levels of HER2 (immunohistochemistry 1 or 2+) had more 

robust immunologic response,63 and in this population the 

DFS rate was improved at 5 years of FU,64 with the DFS rate 

of 88.1% in vaccinated patients  versus 77.5% in controls 

(P=0.16). In contrast, in patients whose tumors overexpressed 

HER2, the DFS rate was 90.3% for vaccinated patients versus 

83.3% for controls (P=0.44). Of 30 vaccinated patients who 

had HER2-overexpressing tumors, only 12 patients received 

trastuzumab before vaccination, and none of these patients 

had recurrences. Because of the trial design, not all patients 

received the vaccine dose that was subsequently determined 

to be optimal. Moreover, a booster inoculation was adminis-

tered in 53 patients (49%). Intriguingly, among the patients 

who received booster inoculations the DFS rate at 5 years 

was 95.2% (P=0.11 vs controls).

AE37 is an HER2 (aa 776–779)-derived peptide modified 

with a “li-Key” motif in order to elicit a combined CD4+ T- and 

CD8+ T-cell response.28 This vaccine  formulation was tested  
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at three different doses with or without GM-CSF in 15 patients 

with node-negative BC, in remission after standard therapy. 

Intriguingly, without adjuvants, AE37 was able to effectively 

elicit a specific combined response.65–67

Another HER2-derived peptide tested in clinical trials is 

GP2. This is a nine-aa, HLA-A2-restricted peptide derived 

from the transmembrane domain of HER2 (aa 654–662), 

with a lower affinity to HLA-A2.68 Preliminary results of a 

Phase II trial of the GP2 vaccine with GM-CSF were recently 

presented.69 In this trial, 172 HLA-A2-positive newly diag-

nosed women with node-positive or high-risk node-negative 

disease after standard therapy were enrolled. GP2 was shown 

to be able to elicit strong immunologic response in the vac-

cinated group, and, although not statistically significant, the 

immune response correlated with a .50% reduction in BC 

recurrences (4.3% vs 11.6% in the vaccine and control group, 

respectively; P=0.41).

Results of the clinical trials of anti-HER2 vaccines, using 

different types of platforms, are summarized in Table 3.70–73

Anti-MUC-1 and anti-CEA vaccines
MUC-1 is a membrane glycoprotein expressed by many 

types of epithelial cells, including breast, lung, and the 

gastrointestinal tract.74 In cancer cells, it is overexpressed 

and aberrantly  glycosylated, and involved in cell-to-cell 

and cell-to-matrix adhesion, in signal transduction, and in 

modulation of the immune system. Nearly 70% of cancers 

overexpress MUC-1.74,75 It has been demonstrated that 

MUC-1 can be immunogenic and could be a suitable target 

for cancer immunotherapy.76–78

A series of pilot studies using anti-unglycosylated MUC-1 

peptide-based vaccination were undertaken, with conflicting 

results.79–83 Further studies showed that directing immuno-

logic response against glycosylated form of MUC-1 could 

translate into stronger humoral responses. An anti-MUC-1 

vaccination conjugated with keyhole limpet hemocyanin 

(KLH) was shown to elicit strong humoral response and to 

be safe.84–86 Based on these results, Miles et al conducted 

a Phase III trial in 1,028 women with metastatic BC who 

had previously received chemotherapy and had had either a 

complete or a partial response, or no disease  progression.86 

All women received T-Reg-depleting doses of cyclophosph-

amide (300 mg/m2) 3 days before vaccine  injection. Although 

the treatment was well tolerated and able to induce strong 

humoral response, no DFS or overall survival (OS) benefit 

emerged.3 However, in patients treated with concomitant 

hormone therapy (34%), a trend toward improved time to 

progression and OS was observed. This observation suggests 

that combined therapy with anti-estrogens and  anti-MUC-1 

could be beneficial.

It was shown that most of the immunogenicity of MUC-1 

resided in a repeated 20-aa peptide domain in the extracel-

lular portion of the protein. This peptide, fused with oxidized 

mannan (M-FP) in an attempt to improve APC presentation, 

was able to induce both cytotoxic and humoral responses.87–90 

Hence, a pilot Phase III study in early stage BC patients 

using oxidized mannan–MUC-1 was undertaken.91 In this 

small, placebo-controlled, randomized study, 31 patients 

with stage II and no more than four lymph nodes involved 

were injected with the vaccine after surgery, radiotherapy, 

Table 3 Clinical trials with anti-HeR2 vaccinations

Platform Vaccine Setting  
and number  
of patients

Adverse events Results

Protein-based  
vaccine

HeR2 iCD + GM-CSF Adjuvant, 29 pts No G2, G3, or G4  
toxicities reported

Specific T-cell and antibody were elicited in 
89% and 82% of pts, respectively70

Protein-based  
vaccine

dHeR2 (truncated recombinant  
HeR2 eCD and iCD) +  
immunoadjuvant

Adjuvant, 45 pts One G3 fatigue  
and one G3 
neutropenia

HeR2 eCD and iCD antibodies developed  
after four immunizations 
Two pts showed evidence of tumor regression72

DNA-based vaccine Poxviral vector encoding  
a modified form of the HER2  
protein

Metastatic, 30 pts No G3 or G4  
toxicities reported

HER2-specific antibodies and T-cell response 
were detected in 66% pts (15 out of 28) 
evaluable patients had SD after 6 months FU71

whole cell-based  
vaccine

SKBR3 (HeR2 overexpressing  
cell line) genetically modified  
to secrete GM-CSF  
administered with TReg  
depleting doses of CY and DOX

Metastatic, 28 pts No G3 or G4  
toxicities reported

Induction of efficient immune response, 
including specific antibody production, 
enhanced by CY and DOX73

Abbreviations: GM-CSF, granulocyte-macrophage colony-stimulating factor; eCD, extracellular domain; HeR2, human epithelial growth factor receptor 2; iCD, intracellular 
domain; pts, patients; G, grade; BC, breast cancer; MBC, metastatic breast cancer; FU, follow-up; SD, stable disease; TReg, regulatory T lymphocytes; CY, cyclophosphamide; DOX, 
doxorubicin; SKBR3, human HeR2 overexpressing breast cancer cell line.
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and commencement of the adjuvant Tamoxifen. At 15 years 

of FU, the recurrence rate in patients receiving placebo was 

60% (9 out of 15), whereas in those receiving immunotherapy 

it was 12.5% (2 out of 16) (P=0.002).92 All patients injected 

with M-FP showed no evidence of toxic effects or signs of 

autoimmunity during the 12–15-year FU. No response to 

MUC-1 was seen in the patients treated with placebo, whereas 

9 of 13 patients immunized with MUC-1 had developed 

MUC-1-specific antibodies and 4 of 10 patients MUC-1-

specific T-cell responses. The clinical results obtained with 

this strategy are very promising, and further larger studies 

are warranted to confirm these results.

Carcinoembryonic antigen (CEA) is another glycoprotein 

aberrantly expressed in a multitude of cancer cell types, 

such as colorectal, lung, or breast cancer.93 It is a member 

of adhesion molecules, and its overexpression in cancer 

cells promotes their adhesion and the metastatic process.94 

PANVAC™ is a new cancer vaccine targeting both CEA and 

MUC-1. The vaccine is delivered through two sequential 

viral vectors, recombinant vaccinia (rV-) and recombinant 

fowlpox (rF-) – given in sequence, containing transgenes 

for the targets and for three human T-cell co-stimulatory 

 molecules (TRICOM [TRIad of COstimulatory Molecules]) 

to enhance immune system activation. The PANVAC vaccines 

are injected subcutaneously and processed by APCs.95 In a 

pilot study, 26 heavily pretreated patients with ovarian cancer 

or BC were enrolled. Side effects were largely limited to mild 

injection-site reactions. For the 12 BC patients enrolled, the 

median time to progression was 2.5 months and the median 

OS was 13.7 months. One patient had a complete response 

and remained on study for 37 months and another had partial 

response, whereas four patients had stable disease. Patient 

with fewer previous lines of treatment or low tumor burden 

were more likely to respond to the vaccine.96 In another pilot 

study, 25 patients with advanced metastatic carcinoma were 

treated with the vaccine. Two patients with BC were enrolled, 

one had a confirmed decrease of .20% in the size of large 

liver metastasis, whereas both had long-duration disease 

stabilization.97 These preliminary results show promising 

activity of this vaccine in BC, and further larger studies are 

currently going on.

Anti-hTERT vaccines
hTERT is another potential target for cancer vaccination. 

Telomerase is a ribonucleoprotein complex that maintains 

chromosomal integrity by protecting telomeric DNA for 

continuous cell proliferation.98 The complex contains hTERT 

and an RNA template. hTERT has broad expression in cancer 

cells, with little or no expression in normal somatic cells. 

A first pivotal study in 7 HLA-A2 advanced breast or prostate 

cancer patients showed good tolerability and promising clini-

cal efficacy. Patients enrolled in this study were vaccinated 

with autologous monocyte-derived DCs pulsed ex vivo with 

hTERT I540 peptide and KLH as adjuvant. Among the two 

patients with BC, one showed a mixed response of skin 

lesions, previously progressed despite chemo, hormonal, and 

radiotherapy.99 Another study was conducted on 19 HLA-A2-

positive patients with metastatic BC who were refractory to 

conventional therapy. Following vaccination, a specific CD8+ 

T-cell response was seen in more than 50% of the patients. 

Despite this, no objective responses were shown. However, 

in a post hoc analysis, it was shown that the median OS was 

significantly greater among patients with high CD8+ T-cell 

response than among low or no responders (32.2 months vs 

17.5 months, P=0.03).100

Combining BC vaccines  
with other strategies
Despite the encouraging preliminary results and excel-

lent profile of tolerability, BC vaccines still show limited 

clinical efficacy. Antigen variability and mechanisms of 

tumor immune-escaping can impair the effectiveness of 

active immunization. Moreover, possible difficulties of the 

immune effectors to reach poorly vascularized tumors and 

high tumor burdens may contribute to limit the efficiency 

of vaccines. For patients with larger burdens of tumor and 

disseminated disease, it is fairly clear that vaccines alone 

are not able to outmatch the immune tolerance mechanisms 

of cancer cells; moreover, these become progressively more 

complex with tumor progression. Thus, a possible way 

to overcome the known limits of active immunotherapy 

may be combining BC vaccines with other strategies, 

such as systemic BC therapies, passive immunotherapy, 

or immunomodulatory agents. Interaction of BC vac-

cines and systemic therapy could be complex and poorly 

predictable. Thus, any combinatorial strategy requires 

strong biologic rationale. For example, target-immune 

checkpoints and reducing activity of T-Regs could over-

come immune tolerance and increase the effectiveness of 

vaccination. Especially for patients with advanced disease, 

incorporating drugs that target BC-biology-inhibiting key 

intracellular signaling pathway may be required to enhance 

the activity of vaccines. In this field, results of first pivotal 

studies incorporating BC vaccines with targeted therapies 

have already been reported. Finally, disruption of tumor 

cells by conventional therapies could lead to the release of 
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tumor fragments/antigens that are otherwise not  accessible 

for presentation and processing and proinflammatory 

cytokines, with the final result of an increased immune 

response.

The humanized anti-HER2 monoclonal antibody tras-

tuzumab has been combined with an HER2 peptide-based 

vaccine in a Phase I/II study in 22 pretreated patients with 

HER2 overexpressing stage IV BC.101 The association treat-

ment was well tolerated and did not result in additional 

toxic effects. At a median FU of 36 months, the median 

progression free survival was 17.7 months (33% proportion 

of patients without events at 3 years). This finding favorably 

compares with the results obtained in similar settings by 

conventional treatments.

Patil et al102 recently reported preliminary results 

of a Phase I study of trastuzumab in combination with 

GP2 vaccine plus GM-CSF in an adjuvant setting. Nineteen 

patients were treated. The combination was shown to be safe, 

with only mild reaction at the site of injection. No adverse 

cardiac events were reported. The vaccine was shown to be 

highly immunogenic, and further studies on this combination 

are warranted.

Trastuzumab has also been safely combined with an 

HER2-positive, GM-CSF-secreting, allogeneic breast 

tumor-cell vaccine. Twenty-two patients with HER2-positive 

metastatic BC were enrolled in this study. No dose-limiting 

toxic effects were observed. Clinical benefit rates (com-

plete responses + partial responses + stable disease) at 

6 and 12 months were 50% (95% CI, 27%–72%) and 35% 

(95% CI, 15%–59%), respectively.103

A plasmid DNA encoding HER-2/neu together with low 

doses of GM-CSF and IL-2 and concurrent trastuzumab has 

been tested in eight patients with metastatic HER2-positive 

BC. The study was conducted by Norell et al.104 No relevant 

toxic effects were observed. The treatment was shown to 

induce immediate and strong antibody production along-

side long-lasting T-cell response. Notably, two out of six 

patients who completed all three vaccination cycles were 

long-term survivors, still alive more than 4 years after the 

last vaccination.

Finally, Hamilton et al105 published interesting results 

of a small pilot trial using recombinant anti-HER2 pro-

tein vaccine with concurrent Lapatinib in 12 women 

with trastuzumab-refractory HER2 overexpressing meta-

static BC. No unexpected adverse events were shown. 

Specific anti-HER2 humoral response was induced in all 

patients. Interestingly, OS at 300 days was 92% (95% CI, 

77%–100%).

Conclusion and future perspectives
In recent years, outstanding progress has been achieved 

toward the cure of BC. More personalized therapies, 

molecularly targeted drugs, and a deeper understanding 

of the mechanisms of disease have allowed improving 

the prognosis of certain subtypes of tumor. In this rapidly 

changing scenario, there is a growing interest in develop-

ing an effective cancer vaccine. Unfortunately, none of the 

vaccine tested so far in clinical trials has turned out to be 

“practice changing.” Nevertheless, three important lessons 

can be drawn.

First, many vaccines elicit a measurable immunologic 

response, such as specific antibodies or specific CD8+ T-cells, 

but this response often has little or no impact on tumor 

growth. Engaging only one compartment of the immune 

system (eg, only cytotoxic response or humoral response) is 

probably not sufficient for an effective therapeutic vaccine. 

New vaccination strategies should therefore aim at eliciting 

a wide response, involving multiple immune effectors such 

as cytotoxic and antibody-secreting B-cells, innate immunity 

effectors, and memory cells. The underlying concept would 

be that a “complete” immunologic response may promote 

increased release of tumor cell fragments/antigens and 

proinflammatory cytokines, resulting in an immunologic 

virtuous cycle.

Second, the main barrier against vaccination is probably 

due to complex immuno-escaping mechanisms developed by 

cancer cells. Regulatory cells such as T-Regs and molecular 

immune checkpoints (eg, CTLA-4, PD1/PD1L) play crucial 

roles in maintaining self-tolerance, and tumors are able to 

exploit these elements to get protection from immune sys-

tem’s attack. New strategies based on blocking antibodies, 

recombinant forms of ligands, or receptors should be imple-

mented to block such modulatory checkpoints and strengthen 

the immune response, with promising initial translation into 

clinical setting. One of the most intriguing perspectives of 

these strategies is obviously their synergism with immuno-

therapy approaches such as cancer vaccines.

Third, patients with large tumor burden and very 

advanced disease, enrolled in most of the clinical trials on 

cancer vaccines, are also those who benefit less from cancer 

vaccines alone. In fact, as cancer progresses and spreads in 

spite of multiple lines of treatment, immune-tolerance mech-

anisms become more intricate and the immune system is less 

likely to counteract the tumor. Therefore, in these patients, 

 combining vaccine with established drugs targeting cancer 

biology, such as endocrine therapy, tyrosine receptor inhibi-

tors, or chemotherapy, is required to achieve satisfactory 
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clinical results. In conclusion, in order to maximize the 

likelihood of success, new BC vaccines should be devel-

oped by integrating a thorough  understanding of immune 

tolerance mechanisms and tested in well-designed clinical 

trials conducted in immunologically favorable settings. 

Moreover, an additional effort should be made to improve 

immunotherapy in the specific basal-like subtype, which 

requires novel therapeutic strategies more than luminal and 

HER2-positive types.
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