Homework 8

Mathematics in Computer Science

- 1. Prove that the smallest group containing I, r, and f is $G = \{I, r, r^2, \dots, fr^3\}$.
- 2. What is the group $\{I, a, b, c, \ldots\}$ with ac = ca, bc = cb, aa = I, bb = I, cc = I, bab = I.
- 3. (a) What is the set of physical symmetries of the cube?
 - (b) Give a brief discussion that will convince us that your answer to part (a) is correct.
- 4. (a) What are the symmetries of the tic tac toe board game?
 - (b) Construct the group multiplication table for the symmetries.
- 5. Consider tic tac toe boards that are completely filled in with \bigcirc 's and \times 's. Use Burnside's theorem to determine the number of equivalence classes.
- 6. Let b_1, b_2, \ldots be the various board positions of tic tac toe. Let G be a group of transformations that map board positions to equivalent board positions.
 - (a) How many board configurations are there if each position on the board contains an \bigcirc , a \times , or is open?
 - (b) Prove that the number of elements of G that preserve a board configuration b_1 is the same as the number of group elements that map b_1 to an equivalent configuration b_2 .
 - (c) How many elements are there in the equivalence class of b_1 if |G| = m and k elements of G preserve b_1 .
- 7. Consider two operations on a 2×2 square. The operations are: r which is a rotation of 180°, and f which is a flip about the diagonal axes from upper left to lower right.
 - (a) What is minimum number of additional operations that needed to be added to form a group?
 - (b) Write out the group table.

1	2	r	4	3
3	4		2	1