Homework 7

Mathematics in Computer Science

1. Prove that

$$\binom{m+n}{k} = \sum_{i=0}^{k} \binom{m}{k-i} \binom{n}{i}$$

- 2. Use the principle of inclusion and exclusion to determine the number of integers between 1 and 1000 not divisible by 2,3, 5, or 7.
- 3. If there are 13,000 undergraduate students at Cornell, how many must have the same birthday?
- 4. How many Boolean functions of n variables?
- 5. Prove that

$$\binom{m+n}{k} = \sum_{i=0}^{k} \binom{m}{k-i} \binom{n}{i}$$

- 6. How many ways can one write seven as the sum of four nonnegative integers?
- 7. (a) Role a k-sided dice three times. How many possible outcomes are there?
 - (b) What is the probability of the same face (number) of the k-sided dice appearing exactly two times in the three roles?
 - (c) If it were a 6-sided dice what is the probability of the same face appearing exactly two times?
 - (d) What is the probability of the same face appearing three times?
 - (e) What is the probability of the no face ever appearing twice?
 - (f) What is the sum of the above three probabilities?
- 8. Given 100 boxes some of which have paint spots as listed below how many boxes have not paint spots?

1

- (a) 40 with some red paint
- (b) 60 with some blue paint
- (c) 10 with some black paint
- (d) 30 with some red and some blue
- (e) 5 with some red and some black
- (f) 5 with some blue and some black
- (g) 2 with some of all three colors

Think about the following question (Optional)

1. Let n be a positive integer. How many ways can one assign positive integers to i_1, i_2, \ldots, i_k such that $\sum_{j=1}^k i_j = n$.