Functional Analysis

Exercices II- Normed vector spaces and Banach spaces

- 1. Let \mathcal{P} denote the infinite dimensional vector space of polynomials on [0,1], considered as a subspace of C([0,1]) with the L^{∞} norm or with the L^1 norm. Show that these two norms are not equivalent on \mathcal{P} .
- 2. Let $S = \{x_n \in l^2, s.t. \exists N \in \mathbb{N} \text{ with } x_n = 0 \text{ for } n \ge N\}$. Show that *S* is not closed.
- 3. Let *E* be a normed space, $x \in E$, $x \neq 0$, and let *F* be a linear subspace of *E*.
 - (a) If there exists $\eta > 0$ such that $B(0; \eta) \subset F$, show that $\frac{\eta x}{2\|x\|} \in F$.
 - (b) If *F* is open, show that F = X.
- 4. Let $E = C^0([a, b], \mathbb{C})$ that we consider together with one of the norms $\|.\|_1$ or $\|.\|_\infty$. Check that E such equipped is a normed vector space. Show that $B^{\infty}(0;1) \subset B^1(0;1)$. Does there exists a R > 0 such that $B^1(0;1) \subset B^{\infty}(0;1)$? Is $B^{\infty}(0;1)$ closed for the norm $\|.\|_1$? Is $B^1(0;1)$ closed for the norm $\|.\|_\infty$?
- 5. Consider $C^0([-1,+1];\mathbb{C})$. Let $H: [-1,+1] \to \mathbb{C}$ such that H(t) = -1 for negative values, +1 for positive values and 0 for 0. We set

$$E = \{ f = u + \lambda H, u \in C^0([-1, +1]; \mathbb{C}), \lambda \in \mathbb{C} \}$$

and for $f \in E$, we define $||f||_1 = \int_0^1 |f(t)| dt$.

Check that *E* with this $\|.\|_1$ is a normed vector space.

Show that the sequence $u_n(t) = \frac{2}{\pi} \arctan(nt)$ is a sequence of *E* which converges to *H*.

For $f \in E$, show that there exists an unique $\lambda \in \mathbb{C}$ such that $f - \lambda H \in C^0([-1, +1]; \mathbb{C})$. Set $l(f) = \lambda$.

Check that *l* is linear but that it is not continuous.

- 6. Let E = C([0,1]) (complex valued functions) with the L^1 norm. Let $\Phi : E \to E$ defined by $\Phi(u)(t) = tu(t)$. Show that $\Phi \in L_c(E; E)$ with a norm less than 1. Using the sequence $u_n(t) = (n+1)t^n$, show that the norm of Φ is indeed 1. Show that there does not exist $u \neq 0$ such that $\|\Phi(u)\|_1 = \|u\|_1$.
- 7. Let *V* be a linear vector subspace of a vector space *E* of co dimension *n*. Show that there exists *n* independent linear forms $l_1, ..., l_n$ such that $v \in V$ iff $v \in \bigcap_i Kerl_i$. Show that the l_i are continuous iff *V* is closed.
- 8. Let *E* be the space of sequences of complex numbers $a = (a_n)$ which are absolutely convergent (as a series). We set $||a|| = \sum_n |a_n|$.
 - (a) Show that (E, ||.||) is a normed vector space.
 - (b) Let $e^{(k)} \in E$ the sequence defined by $e_n^{(k)} = 0$ for $n \neq k$ and $e_k^{(k)} = 1$. Has this sequence any closure point? What can we deduce?
 - (c) For fixed R > 0, we consider $K = \left\{ a \in E, s.t. |a_n| \le Rn^{-n^2} \right\}$. Show that K is precompact. One can start by showing that the sets $K_N = \{a \in K, s.t. a_n = for \ n \ge N+1\}$ are precompact.

- 9. Let *E* be as in the preceding exercice and let *u* be a bounded non null sequence. For $a \in E$, we denote $l(a) = \sum_{n} u_n a_n$.
 - (a) Show that *l* is a continuous linear form. Let H = Ker l be its kernel and $v_n = \bar{u}_n / n^2$.
 - (b) Show that any sequence $a \in E$ can be written as $a = \lambda v + b$, with $\lambda \in \mathbb{C}$ and $b \in H$ and that this decomposition is unique.

Let $W = \{a \in E, s.t. \sum_{n} na_n \text{ is abs. conv.}\}$. For $a \in E$, let $a^{(k)} = (a_1, a_2, ..., a_k, 0, ...)$.

- (c) Show that $a^{(k)} \rightarrow a$ in *E*. Is *W* a closed linear vector subspace of *E*? Let $b \in E W$ and $E_1 = W \oplus Vect(b)$. For $a = w + \lambda b$ in E_1 , we define *l* as $l(a) = \lambda$. Show that *l* is a linear form on E_1 which is not continuous.
- 10. Let $E = L^1(\mathbb{R})$ with the usual norm. Show that

$$H = \{ f \in E, s.t. \ \int_{-\infty}^{\infty} f(x) dx = \int_{0}^{\infty} \left(\frac{x}{1+x} f(x) dx \right) \}$$

is a closed hyperplane and find a supplementary subspace.

- 11. Let *E* be a normed vector space over \mathbb{K} . Let $H = l^{-1}(0)$, where *l* is a continuous linear form. Show that $d(x, H) = \frac{|l(x)|}{||I||}$.
- 12. Let *E* be a normed vector space over \mathbb{K} . An affine hyperplane is by definition of the form $H = a + H_0$ where $a \in E$ and H_0 is an hyperplane. Show that there exists a linear form *l* and a scalar α such that $H = l^{-1}(\alpha)$.
- 13. We let L_0 the vector space over \mathbb{R} of the sequences *a* of complex numbers converging to 0. For $a \in L_0$, let $||a|| = \sup_n |a_n|$ and $l(a) = \sum_n \frac{a_n}{2^n}$.
 - (a) Show that for all $a \in L_0$, we have $||a|| < \infty$.
 - (b) Show that *l* is a linear continuous form of norm 1 but that this norm is never obtained.
- 14. Let $E = C^0([-1, 1])$ (valued in \mathbb{C}), and we consider the usual $\|.\|_1$ norm. Show that the sequence u_n defined by $u_n(t) = n \arctan(nt)$ has a limit for the pointwise convergence denoted by u. Do we have $u \in E$? Show that u_n converges to u for the $\|.\|_1$ norm, and thus that it is a Cauchy sequence in E. Conclude. What about the $\|.\|_{\infty}$ norm?
- 15. Determine if the following spaces are Banach :
 - (a) $E = C^0([0, 1])$ with the L^2 norm.
 - (b) $E = C_0^0(\mathbb{R}^N)$ with the L^{∞} norm.
 - (c) *E* is the space of sequences converging to 0 for the sup norm.
 - (d) $E = l^2$.