
II- NORMED VECTOR SPACES AND BANACH SPACES

These notes introduce the general setting of normed vector spaces and in particular Banach spaces.

1. Normed vector spaces

Metric spaces (and topological spaces) might be too general for usual applications to partial differ-
ential equations, though recent progress on this topic has shown the contrary. In particular, adding a
vectorial structure on our abstract space might be convenient.

Therefore, in this chapter, E will denote a vector space over K = R or C (allowing for complex
scalars is not only for abstract purposes; it is for example useful if we want to solve such equations as
Schrodinger equation from quantum mechanics).

Definition 1.1. A norm on E is a function denoted ‖.‖ from E to R+ such that, for all x, y ∈ E, for all
λ ∈ K

1) ‖x‖ = 0 iff x = 0
2) (positive homogeneity) ‖λx‖ = |λ|‖x‖
3) (triangular inequality) ‖x + y‖ ≤ ‖x‖ + ‖y‖

A vector space E together with a norm ‖.‖ is called a normed vector space. You should check
immediately that if we set d(x, y) = ‖x − y‖, then d is a distance over E. This is called the distance
induced by the norm ‖.‖. Therefore, E with a norm is a particular case of a metric space (what about
the converse?). In particular, all the notions of the previous chapter apply here.

Remark 1.2. We have many examples of norms: (work out these facts)
1) the usual euclidean norm on Kn .
2) If M is a compact metric space, let E = C(M) denotes the set of continuous functions (with

values in K). Define
‖ f ‖ = sup

x∈M
| f (x)|

Show that this is a norm on E.
3) If (X,Σ, µ) is a measure space, then if 1 ≤ p < ∞, ‖ f ‖p ≡ [

∫
X | f |

pdµ]
1
p is a norm on E = Lp(X),

similarly for L∞(X) and the associated norm

‖ f ‖∞ = ess sup
x∈X
| f (x)|

4) Similarly for the spaces l∞.
5) If F is a linear subspace of E, then the restriction ‖.‖F of the norm to F is also a norm on F.
6) If E and F are two normed vector spaces, then we can define a norm on E × F by setting

‖(x, y‖E×F = ‖x‖E + ‖y‖F .

We have seen previously the notion of equivalent distances for metric spaces: if we have two
equivalent distances on an abstract space, then the two induced topologies are the same.

For normed vector spaces, we have a similar notion of equivalent norms. Let E be a vector space.
Two norms ‖.‖1 and ‖.‖2 are equivalent iff there exist c > 0, C > 0 such that for all x ∈ E, we have

c‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1.

It is not difficult to show that this defines an equivalence relation among norms on E. Moreover,
the induced topologies are the same: in particular, the convergent or the Cauchy sequences are the
same for any equivalent norm.
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Though in general, in an abstract vector space E, two norms need not be equivalent, this is always
the case if the dimension of E if finite. You have already seen the proof of this fact before:

Proposition 1.3. If E is a finite dimensional vector space, then all norms are equivalent.

Proof. Work out this: Fix a basis ei, 1 ≤ i ≤ n. Then any x ∈ E has components xi in this basis.

Define N(x) =

√∑
i x2

i . It is not difficult to see that N is a norm on E (somehow similar to the
euclidean norm on Rn).

Next let ‖.‖ be any (other !) norm on E. Then show, using the components and Cauchy-Schwarz
inequality, that there exists a constant C > 0 such that, for all x ∈ E, we have ‖x‖ ≤ CN(x). Then
show that ‖.‖ is continuous on E, and that it is strictly positive on the unit sphere defined from the
norm N. Complete the remaining arguments. �

In particular this shows that any finite dimensional vector normed space is always complete. More-
over a finite dimensional subspace of a vector normed space is always closed. Beware that if we
remove the finite dimension assumption, this is not necessarily true.

Remark 1.4. Let F be the linear subspace of l∞ consisting of sequences having only finitely many
non zero terms. Then F is not closed.

Indeed, let x = (1, 1/2, 1/3, ....) which is in l∞ and not in F. Let xn = (1, 1/2, 1/3, ..., 1/n, 0, , 0, ...)
which is in F, One can show that xn → x in l∞. Therefore F is not closed.

This shows that a linear subspace F of a normed space is not necessarily closed. But this is always
the case for F̄ (its closure), i.e. F̄ is a closed linear subspace of E (work out this).

Usually F needs not be a vector subspace of E. In this case, it is useful to pass to its span. We fix
some vocabulary. Let F ⊂ E be any non empty set.

We let Vect(F) (the span of F) be the set of all linear combinations of elements in F, or equivalently
the intersection of all linear subspaces containing F.

In the same way, we let cl(F) be the intersection of all closed linear subspaces of F.
It is not difficult to show that:
cl(F) is a closed linear subspace of E containing F. And that cl(F) = Vec(F). Therefore we do

not loose in both notions.
One important result if given by

Theorem 1.5. (Riesz) The unit closed ball (or the unit sphere) of a vector normed space (e, ‖.‖) is
compact iff E is finite dimensional.

Proof. Of course, if E is finite dimensional, there is nothing to prove (i.e. this is known). So let’s
assume that E is infinite dimensional. We shall need Riesz’s Lemma (see below). We show the proof
for the unit sphere S = {x ∈ E, ‖x‖ = 1}.

Let x1 ∈ S . Since we know that E is not finite dimensional, then Vec{x1} , E. Furthermore,
since Vec{x1} is finite dimensional, it is closed. By Riesz’s Lemma, there exists x2 ∈ S , such that
‖x1 − λx1‖ ≥ 3/4 for all λ ∈ K.

Similarly, Vec{x1, x2} , E and again there exists x3 ∈ S such that

‖x3 − αx1 − βx2‖ ≥ 3/4

for all α, β ∈ K. Continuing, we see that there exists a sequence xn in S such that ‖xn − xm‖ ≥ 3/4,
and thus without any convergent subsequence. Thus S cannot be compact and so also for the closed
ball. �

Lemma 1.6. (Riesz) Let E be a normed vector space, F a closed linear subspace of E, with F , E,
and let α such that 0 < α < 1. Then there exists xα ∈ E, such that ‖xα‖ = 1 and ‖xα − y‖ > α for all
y ∈ F.
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Proof. Since F , E, there exists x ∈ E − F. Since F is closed, d = d(x, F) > 0. Thus also d < dα−1.
Therefore there exists z ∈ F such that ‖x − z‖ < dα−1.

We set xα = x−z
‖x−z‖ . For course this is a unit vector, and for all y ∈ F, we have

‖xα − y‖ = ‖
x − z
‖x − z‖

− y‖ =
1

‖x − z‖
‖x − (z + ‖x − z‖y)‖ > (αd−1)d = α

using the fact that F is a linear subspace.
�

From Basic courses, you know that if E is a finite dimensional normed vector space, then any linear
form on E is continuous. This is not necessarily true if E is infinite dimensional, see exercices.

However, a good point is that linear continuous applications are equivalent to a boundedness prin-
ciple in the following sense:

Theorem 1.7. Let (E, ‖.‖E) and (F, ‖.‖F) be two normed vector spaces. Let f : E → F be a linear
application. Then 1) is equivalent to 2) and equivalent to 3)

1) f is continuous at 0
2) f is uniformly continuous
3) f is bounded: there exists M > 0 such that for all x ∈ E, we have ‖ f (x)‖F ≤ M‖x‖E .

Proof. Work out this
�

This is an important result. Let us introduce Lc(E; F) for the set of all continuous and linear
applications from E to F (withe fixed norms on each...). Then we can define a norm on this space by
setting

‖| f ‖| = sup
x∈E,‖x‖=1

‖ f (x)‖ = sup
x∈E,‖x‖≤1

‖ f (x)‖ = sup
x∈E,x,0

‖ f (x)‖
‖x‖

Check out this point
Also note that the sup is not necessarily a max.
As particular examples of linear applications, we will now consider the case of linear forms (i.e.

valued in K), together with the notion of hyperplanes (we shall say more on this later on).
First recall that if E is a vector space, and if V and W are two vector subspaces of E, then we say

that they are supplementary if we can write E = V + W. We say that they form a direct sum (of E) if
they are supplementary and V ∩W = {0}. Then we write E = V ⊕W.

It is not difficult to show that if this is the case, then for any x ∈ E, there exists unique v and w in
V and W resp. such that x = v + w. We denote v = pV (x) and w = pW(x). It is not difficult to show
also that this defines two linear applications pV and pW which are the corresponding projections.

Furthermore, if W′ is another vector subspace such that E = V ⊕W′ then W and W′ are isomorphic
(use the projections).

Therefore all subspaces which are in direct sum with a fixed subspace V are all isomorphic between
them, and thus have the same dimension. This number is by definition the co-dimension of V .

By definition an hyperplane is a vector subspace of co-dimension 1.
One can show :

Proposition 1.8. The hyperplanes H of a vector space E are the kernels of the non null linear forms
on E. Furthermore, if E is a normed vector space, and H = Ker (l) for some non null linear form,
then H is closed iff l is continuous.

Proof. Work out this �
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Since continuity plays a key role, this is why we introduce, if E is a normed vector space, the
(topological) dual of E, denoted by E′ which is nothing else than Lc(E;K).

Later on , we shall prove the following result (a particular case of Hahn-Banach theorem)

Theorem 1.9. Let E be a normed vector space and V a vector subspace of E. If m ∈ V ′ (for the
induced norm), then there exists an extension l ∈ E′ of m not necessarily unique and with the same
norm

∀v ∈ V,m(v) = l(v) and ‖l‖E′ = ‖m‖V′

This Theorem implies the following

Proposition 1.10. Let E be a normed vector space, and x ∈ E. If for all l ∈ E′, we have l(x) = 0,
then x = 0.

2. Banach Spaces

Definition 2.1. A Banach space is a normed vector space and complete w.r.t. the metric associated
with the norm.

Examples:
- Any finite dimensional normed vector space is a Banach space.
- if X is a compact metric space, then C(X) is a Banach space.
- if (X,Σ, µ) is a measure space, then Lp(X) is a Banach space.
- lp is a Banach space.
- if E is a Banach space, and if F is a linear subspace of E, then F is Banach iff F is closed.
A classical application is this:

Proposition 2.2. If E is a vector normed space, and if F is a Banach space, then Lc(E; F) is a Banach
space.

Proposition 2.3. If E is a Banach space, and if xn is a sequence of elements of E, then if the series∑
n ‖xn‖ converges, then the series

∑
n xn converges also.

3. Differential Equations in Banach spaces

We start with some facts about integrals of functions of a real variable, but valued in a normed
vector space.

Proposition 3.1. Let a < b two real numbers. Let B be a Banach space. Let f ∈ C([a, b]; B). Let
h = (t1, ..., tN) be a subdivision of [a, b]. Set Ih( f ) =

∑N−1
n=1 (tn+1 − tn) f (tn). Then there exists a vector

I( f ) ∈ B such that Ih( f ) → I( f ) when |h| → 0 (here |h is the maximal length of the subdivision),
which is by definition the integral of f over [a, b]:

∫ b
a f (t)dt. Set also

∫ a
b = −

∫ b
a . Then one has

‖

∫ b

a
f ‖ ≤ |b − a| sup | f |

and the usual Chasles relation. I is continuous from C0 into B.

Let us recall the notion of the derivative of a function from an interval J into a normed vector
space. In particular if the derivative is zero, then this function is a constant.

One can show, that if J is an interval and B a Banach space, if f ∈ C(J; B), then all primitives
(antiderivatives) of f are given by functions F ∈ C1(J; B) such that F(t) = x +

∫ t
a f (s)ds, for any x

and a.
By using this and a fixed point theorem, one can show
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Theorem 3.2. (Cauchy-Lipschitz) Let B be a Banach space overK and J an interval. Let F : J×B→
B be continuous and globally Lipschitz w.r.t. the second variable:

there exists L > 0,∀t ∈ J,∀x, y ∈ B, ‖F(t, x) − F(t, y)‖ ≤ L‖x − y‖

Then: for any t0 ∈ J, for any x0 ∈ B, there exists a unique solution φ ∈ C1(J; B) of the ode y′ = F(t, y)
such that φ(t0) = x0.


