
I- SOME KNOWN FACTS

This Chapter describes very quickly the basics facts on metric spaces. You can work out the
proofs of the results below, which are all standard from a classical course on topology. We will shift
from Chapter 2 to a special case of metric space, i.e. normed vector spaces. We also recall some basic
elements from Lebesgue integration. For the measure theory, it is recommended to read a classical
course on this topic. Finally, we have given some results related to sequences, which might be useful.
Some of the notions below were taken from textbooks or lectures notes by Poupaud, Hirsch, Lacombe,
Rudin.

1. Metric spaces

Definition 1.1. A metric space (E, d) is a set E together with an application d : E × E → R+ called
a distance or a metric, such that, for all x, y, z ∈ E:

1) d(x, y) = 0 iff x = y.
2) d(x, y) = d(y, x)
3) d(x, z) ≤ d(x, y) + d(y, z)

Note that E is not assumed to be a vector space. Then we have the following sets:

Bc(x; r) and B(x; r)
which are called open balls and closed balls.

A metric space (E, d) becomes a topological space if we define a suitable notion of open sets.
An open set O in a metric space (E, d) is a subset of E such that, for all x ∈ O, there exists an open

ball B(x; r) ⊂ O.
One can show that if O denotes the collection of such open sets, then (E,O) is a topological set:

this is the topology induced by the metric d. Of course, if we change the metric d, then we get another
collection of open sets. But if the metrics are equivalent, then we get exactly the same topology. Two
distances d and d′ on a set E are said equivalent if there exist two non negative constants c, c′, such
that for all x, y ∈ E, cd(x, y) ≤ d′(x, y) ≤ c′d(x, y).

In any case, you must remember that any (finite or not) union of open sets is an open set, and any
finite intersection of open sets is again an open set.

A neighborhood of x ∈ E is a set containing an open set containing x.
Once we have defined open sets (in a metric space), then we can define a closed set: a closed subset

F ⊂ E is said to be closed if its complementary E − F is open. Therefore, one can show that any
intersection of closed sets is a closed set, while any finite union of closed sets is again a closed set.

Definition 1.2. Let X ⊂ (E, d). Then the interior X◦ is the biggest open set included in X. Its closure
(adherence) X̄ is the smallest closed set containing X. Its boundary is ∂X = X̄ − X◦.

A set X is said to be dense in E if X̄ = E.

The closure of X is in fact the set of all its closure points, in the following sense: a point x ∈ E is
said be a closure point of X if for any ε > 0, there exists a y ∈ X, such that d(x, y) < ε. (Equivalently,
see below, if there exists a sequence yn ∈ X such that yn → x).

The notion of distance or metric is between points of E. We can also define a metric between
subsets. For example, if x ∈ E, and if A ⊂ E, then we set

d(x, A) = inf
y∈A

d(x, y)
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and similarly if ⊂ E and B ⊂ E, we set

d(A, B) = inf
x∈A,y∈B

d(x, y).

There many ways to construct new distances on new sets, starting from old ones. One typical
example is provided by the so called product metric: if (E, d) and (F, d′) are two metric spaces, then
we can define a new metric d̃ on E × F by the following formula

d̃((x, x′), (y, y′)) = d(x, y) + d′(x′, y′)

For checking some topological properties, sequences are useful. Let us first of all recall

Definition 1.3. Let an be a sequence in a metric space (E, d), and let a ∈ E. We say that an converges
to a, an → a or limn an = a if d(an, a)→ 0.

It is of course understood that n goes to infinity. In fact, the above notion is topological in the sense
that one can show that an converges to a iff for any neighborhood V of a, there exists an integer N
such that, for any n ≥ N, one has an ∈ V .

In case a sequence does not converge, it might be useful to pass to a subsequence:

Definition 1.4. A point x ∈ E is said to be a limit point or an adherent point of a sequence an if there
exists a subsequence such that ank → x.

One can show for example that a set F is closed if its contains the limits of any convergent sequence
of F.

We can now go to the continuity of an application f from a metric space (E, d) to another one
(E′, d′). Since these two spaces are particular topological spaces, recall that for an x ∈ E, f is said to
be continuous at x iff for any neighborhood W of f (x), there exists a neighborhood V ⊂ E of x such
that f (V) ⊂ W, that is the inverse image of any neighborhood of f (x) is a neighborhood of x.

On can show

Proposition 1.5. f is continuous at x iff we have 1) iff we have 2).
1) For any sequence an → x, one has f (an)→ f (x).
2) For all ε > 0, there exists δ > 0, such that for all y, d(x, y) < δ, then d′( f (x), f (y)) < ε.

A function f which is continuous at any point x is said to be continuous. We let C(E; E′) be the
set of all continuous functions from E to E′. It is not difficult to show that an an application f is
continuous iff the inverse image of any open set is an open set. This is also equivalent to say that the
inverse image of any closed set is a closed set.

Moreover, continuity is preserved by composition.
We can now go to sequences of functions: let fn : E → E′ and f : E → E′. Recall that fn → f

(simply or pointwise) iff for any fixed x ∈ E, one has fn(x)→ f (x). This is called simple or pointwise
convergence, For many purposes, this is not a convenient notion. For example, properties of functions
fn are not conserved by this type of convergence. One useful notion which is better is the uniform
convergence:

Definition 1.6. We say that fn converges uniformly to f , fn →u.c f iff

sup
x∈E

d′( fn(x), f (x))→ 0.

From previous courses, you know that the uniform limit of continuous functions is a continuous
function (which is not true if we assume only a pointwise convergence).

Finally, another useful notion is the uniform continuity:

Definition 1.7. A function f : E → E′ is said to be uniformly continuous if for all ε > 0, there exists
δ > 0 such that for all x, y ∈ E, then d′( f (x), f (y)) > ε.
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Note the position of variable x.
For many reasons, basic metric spaces are not enough for applications. For example, suppose that

you have a numerical algorithm which generates a sequence an and you wish to show that it converges
(to some a). Of course, usually you do not know a. Therefore, we need a criterion which will entail
the convergence of our sequence. The best one is given by

Definition 1.8. A sequence an is said to be a Cauchy sequence iff for all ε > 0, there exists an integer
N such that for all n ≥ N, m ≥ N, then d(an, am) < ε.

The point is to notice that first of all, any convergent sequence is automatically a Cauchy sequence.
Therefore, it makes sense to test the Cauchy condition above first. However, even if a sequence is a
Cauchy sequence, it does not mean that it will converge. This is why we need

Definition 1.9. A metric space (E, d) is said to be complete if any Cauchy sequence is convergent (in
E).

You have already seen in previous classes many examples of complete or non complete spaces. Let
us add that if (E, d) is a complete metric ace, and if F is a subset of E, then F is complete iff F is
closed. The notion of completeness is useful for many applications. We provide two examples

Theorem 1.10. (Extension of a uniformly continuous map) Let (E, d) and (E′, d′) be two metric
spaces, with E′ complete. Let D be a dense set of E and let f : D → E′ be uniformly continuous on
D. Then there exists an unique uniformly continuous extension f̃ of f on the whole of E.

Theorem 1.11. (Picard fixed point theorem) Let (E, d) be a complete metric space. Let f be a strictly
contractive map of E, that is there exists 0 < k < 1 such that for all x, y ∈ E, d( f (x), f (y)) ≤ kd(x, y).
Then there exists a unique fixed point of f in E, that is a point a ∈ E such that f (a) = a. This fixed
point can be obtained as the limit of the sequence an, with an+1 = f (an), for any choice of initial value
a0. We have d(an, a) ≤ knd(a0, a).

Another way to get convergent sequences is based on compactness arguments. Recall for example
Bolzano Weierstrass theorem. Compactness is a topological property.

Definition 1.12. Let E be any topological space. Then E is said compact if for any covering of E
by open sets, we can extract a finite covering. We say that E is sequentially compact if from any
sequence of E, we can extract a convergent sequence (in E). We say that it is separable if there exists
a countable dense subset. A subset X is said to be relatively compact if its closure X̄ is compact for
the induced topology.

Finally, if E is a metric space, E is said to be pre-compact if for any ε > 0, there exists a finite
number of points in E, say x1, ..., xn such that E is exactly the union of the open balls B(xi; ε).

Note that any subset of a separable space is also separable. It is not difficult also to show that a
compact metric space is separable.

These are general definitions. However, one can show (work out the proof which is not so easy)
the following result

Proposition 1.13. Let (E, d) be a metric space. Then 1) is equivalent to 2) and equivalent to 3) .
1) (E, d) is compact
2) (E, d) is sequentially compact
3) (E, d) is pre-compact and complete

On can also show that

Proposition 1.14. Let X be a subset of a complete metric space (E, d). Assume that X is pre-compact.
Then it is relatively compact.
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Proposition 1.15. Let (E, d) and (E′, d′ two metric spaces, and f ∈ C(E; E′). Then if E is compact,
f (E) is also compact.

You have certainly seen previously Tykhonov theorem: it says that any product of compact topo-
logical spaces is also compact (see any book on topology). In the special case of two compact metric
spaces E and E′, then the product E × E′ is also compact for the product metric.

Finally, other useful properties are:
- A real function on a compact metric space is bounded and attains its bounds.
- A compact metric space is automatically bounded. Here we need to recall that by definition a

subset A of a metric space E is bounded if there exists c > 0 such that d(x, y) ≤ c for all x, y ∈ A.
- A continuous function from a compact metric space is automatically uniformly continous.
Later on, we shall see and prove the following important result

Theorem 1.16. (Baire) If (E, d) is a complete metric space, and if E = ∪∞i=1F j, where the F j are
closed, then at least one of the F j contains an open ball.

2. Lebesgue integration

Consider the space C([a, b] of all (real or continuous) functions, together with the uniform metric
d∞. One can show that this space is complete (why?).

Now consider the following metrics on C([a, b]), for 1 ≤ p < ∞:

dp = [
∫ b

a
| f (x) − g(x)|dx]

1
p ,

This is also a metric (why), but C([a, b]) with this metric is not complete. This is one reason why
Riemann integrals are not suitable and that we need to shift to Lebesgue integration.

We consider a general setting of an abstract space X (instead of the interval [a, b]). We will also
consider extended real numbers with the convention that 0.∞ = 0.(−∞) = 0.

Recall that a σ−algebra or a σ−field on X is a collection Σ of subsets of X, containing the full set
X and the empty set , which is stable taking complements and by countable union.

An element of Σ is called a measurable set.
Next assume that we have such a couple (X,Σ) of an abstract set X together with a σ−algebra.

Then a measure µ is a map from Σ to R̄+ such that the image of the empty set is 0 and countably
additive (i.e. the image of a countable union of disjoints elements of Σ is the sum of the images).

Then (X,Σ, µ) is called a measure space.
A set N ∈ Σ such µ(N) = 0 is said to have measure zero or is a null set. We have the notion of

”almost everywhere” ...
Two examples are the counting measure and the Lebesgue measure.
• Counting measure: take X = N, and let Σc be all the subsets of N. Then for any S ⊂ N, let

µc(S ) = card S .
• Lebesgue measure: there is a σ−algebra ΣL on R, containing any finite interval [a, b], and a

measure µL on ΣL such that µL([a, b]) = b − a = l([a, b]). The sets of measure zero of this space are
exactly the sets A such that: for any ε > 0, there exists a countable collection of intervals I j ⊂ R
such that A ⊂ ∪∞i=1I j and

∑
j l(I j) < ε. This is the Lebesgue measure, and the sets in ΣL are said to be

Lebesgue measurable.

Now assume that we have a measure space (X,Σ, µ). We describe how to construct an integral of a
function f : X → R̄. As usual we start with so called simple functions. First, for any subset A ⊂ X,
we let χA denote its characteristic function. A function f : X → R is said to be simple if it can be
written as f =

∑k
j=1 α jχS j , for some k ∈ N and some S j ∈ Σ, j = 1, ..., k.
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If f is non negative and simple, then by definition its integral (w.r.t. µ and over X) is defined by∫
X

dµ =

k∑
j=1

α jµ(S j).

Eventually µ(S j) = ∞, and eventually
∫

X f dµ = ∞ also.
To define the integral for general functions, we need to restrict to so called measurable functions.

A function f : X → R̄ is said to be measurable if for every α ∈ R, the set {x ∈ X, f (x) > α} belongs
to Σ.

This notion of measurability is stable by passing to absolute value, and to minus and plus opera-
tions: i.e. | f |, f ∓ are also measurable.

Assume now that f is measurable and non negative. Then we define∫
X

f dµ = sup{
∫

X
f dµ, g simple and 0 ≤ g ≤ f }

If f is measurable and
∫

X | f |dµ < ∞, then we say that f is integrable and we define∫
X

f dµ =

∫
X

f + −

∫
X

f −dµ.

The extension to complex valued functions is similar. Finally we can define also the integral over
an element of Σ (by extending by 0 outside).

We let L1(X) be the set of all integrable functions. In particular for the counting measure exam-
ple, we recover the usual l1(N) space, while for the Lebesgue case, we recover the space L1(Rk) of
Lebesgue integrable functions. Let us note immediately that on compact intervals of R, a function
which is bounded and Riemann integrable is also Lebesgue integrable, with the same integrals.

In the general case, the notion of integral shares usual properties such as: linearity, monotonicity ..
Furthermore if f = 0 a.e., then its integral is zero. This is useful in particular if we allow bounds not
eveywhere but only a.e.

If f is measurable and there exists a constant c such that f (x) ≤ c, then we can define its essential
supremum as ess sup f = inf{M, f (x) ≤ Ma.e.}. It follows that f (x) ≤ ess sup f a.e. Similarly, we
can define the essential infimum.

Then a function f is essentially bounded if there exists a constant c such that f (x) ≤ c a.e.
Next introduce the following definition

d1( f , g) =

∫
X
| f − g|dµ.

for all functions f , g in L1(X). This is not quite a metric. So we pass to quotient, using the relation
≡ to identify functions which agree a.e. The quotient space is defined as L1(X), and we can define the
integral a (class of) function.

More generally, letting

Lp(X) = { f , f measurable and [
∫

X
| f |dµ]

1
p < ∞}

for 1 ≤ p < ∞, and
L∞(X) = { f , f measurable and ess sup | f | < ∞}

we can introduce the spaces Lp(X) and L∞(X).
Recall that for any measurable functions f and g, then (eventually with infinite values):
- Minkowski’s inequality: for 1 ≤ p < ∞
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[
∫

X
| f + g|pdµ]

1
p ≤ [
∫

X
| f |pdµ]

1
p + [
∫

X
|g|p]

1
q

ess sup | f + g| ≤ ess sup | f | + ess sup |g|
- Holder’s inequality for 1 < p < ∞ and p−1 + q−1 = 1∫

+X| f g|dµ ≤ [
∫

X
| f |pdµ]

1
p [
∫

X
|g|q]

1
q∫

+X| f g|dµ ≤ ess sup | f |
∫

X
|g|dµ

It follows that Lp(X) is a metric space, and that

dp( f , g) = [
∫

X
| f − g|p]

1
p , 1 ≤ p < ∞, ess sup | f − g| i f p = ∞

is a metric on Lp(X).
It can be shown that they are also complete metric spaces. Finally note that we recover usual

inequalities in the case of the counting measure.

3. More on sequences

Let X be any set. X is said to be countably infinite if there exists a bijection φ from N to X, i.e. we
can order X as X = {φ(0), φ(1), ..}, with φ(n) , φ(p) if n , p. We can also use the notation φ(n) = xn.
A set is countable if it either finite or countably infinite.

For example, N, N2 are countable.
It can be shown that a nonempty set X is countable iff there exists a surjection from N to X, which

is equivalent to the existence of an injection from X to N. A finite product or a countable union of
countable sets is again countable.

We now describe one of the most important tools in analysis, i.e. the diagonal procedure or extrac-
tion.

First of all, if xn is a given sequence, recall that a subsequence is a sequence of the form xnk , where
nk is a strictly increasing sequence of integers. It can be also written as xφ(k) where φ : N → N is a
strictly increasing function. If we let φ(N) = A, we can denote this subsequence by (xn)n∈A.

Proposition 3.1. Let (Xp, dp) be a sequence of metric spaces, and let for every p ∈ N, (xn,p)n∈N be a
sequence in Xp. Assume that for every p ∈ N, the set {xn,p, n ∈ N} is relatively compact in Xp.

Then there exists a strictly increasing function φ : N→ N such that for every p ∈ N, the sequence
(xφ(n),p)n∈N converges in Xp.

Let us recall that a subset Y of a metric space X is relatively compact if there exists a compact set
K of X such that Y ⊂ K or equivalently if the closure of Y in X is compact. This is also equivalent to:
Y is relatively compact iff every sequence in Y has a subsequence that converges in X (the limit not
being necessarily in Y).

The important point is that the function φ does not depend on p.
Proof: By induction, due to the relative compactness, we can construct a decreasing subsequence

An of infinite subsets of N such that, for every p ∈ N, the sequence (Xn,p)n∈Ap converges in Xp. Here
we use the diagonal procedure: it consists in defining the map φ by setting

φ(p) = the (p + 1) − st element of Ap.

Thus φ(p + 1) is strictly greater than the (p + 1)-st element of Ap+1, which in turn is greater than
the (p + 1)-st element of A − p, which is φ(p). Thus φ is strictly increasing. Moreover, for every
p ∈ N, the sequence (xφ(n),p)n≥p is a subsequence of the sequence (xn,p)n∈Ap because if n ≥ p, we have
φ(n) ∈ An ⊂ Ap. Thus the sequence (xφ(n),p)n∈N converges.
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It is then possible to give a proof of Tychonoff’s theorem. For this purpose, let (Xp, dp) be a
sequence of metric spaces. Put X =

∏
p∈N Xp, which is the set of sequences x = (xp)p∈N such that

xp ∈ Xp for all p ∈ N. The followinf

d(x, y) =

∞∑
p=0

2−p min(dp(xp, yp), 1)

defines a metric d on X. This is the product distance on X. For this metric, a sequence xn of points
in X converges to a point x ∈ X iff limnxn

p = xp for any p ∈ N. If the metric spaces (Xp, dp) are all
the same (Y, δ), we write X = YN. Then X is the set of sequences in X or the set of maps from N
into Y , with the pointwise convergence. Then we get the Tychonoff’s theorem: if Xp is a sequence of
compact metric spaces, then the product space is also compact.


