Functional Analysis

Exercices I- Metric spaces

- 1. Let $0 \le \varrho < r$ and $x, y \in E$. Show that $B_c(x; \varrho) \subset B(x; r)$. Show also that if $d(x, y) < r \varrho$ then $B_c(y; \varrho) \subset B(x, r)$.
- 2. Show that open balls are open sets and that closed balls are closed sets (for the topology induced by the metric *d* on *E*).
- 3. Show that a set is open iff it is a neighborhood of all its elements.
- 4. Metric spaces setting is a very large one, and can be misleading. For example, the interior of a closed ball is not necessarily the open ball with the same center and same radius. Let (E, d) be a metric space, $x \in E$ and r > 0. Find the relationship (inclusions or equalities) between the following sets

 $(B(x;r))^{\circ}$, B(x;r), $\overline{B(x;r)}$, $(B_c(x;r))^{\circ}$, B(x;r), $\overline{B_c(x;r)}$

Let $E = \{-2\} \cup [-1, 2]$ with the distance d(x, y) = |x - y|. Show that

$$B_c(1;1) = [0,2], B(1;1) =]0;2[, (B_c(1;1))^\circ =]0,2[$$

Find also $B_c(-1;1)$, B(-1;1) and $\overline{B(-1;1)}$. Comments?

- 5. Show that *x* is not an adherent (or limit point) point of a sequence $(a_n)_n$ iff there exists an $\varepsilon > 0$ such that $B(x;\varepsilon)$ does contain only a finite number of elements of the sequence (a_n) .
- 6. Let *X* be a dense set of a metric space (E, d). Show that, for all $x \in E$, there exists a sequence x_n of *X* such that $x_n \to x$.
- 7. Let *F* be a closed set of a metric space (E, d), and $x \in E$. Show that $x \in F$ iff d(x, F) = 0.
- 8. Show that the (local) continuity is preserved by composition between continuous functions in metric spaces.
- 9. Let E, d) be a metric space. Show that $\tilde{d} = d_{E \times E}$ is a metric on $E \times E$. We equip $E \times E$ with this metric, and \mathbb{R}^+ with the usual distance. Show that \tilde{d} is a uniformly continuous function.
- 10. Let $E = \mathbb{R}$ equipped with the usual distance. Show that $f(x) = x^2$ is not uniformly continuous. Show that $d'(x, y) = |\arctan(x) - \arctan(y)|$ is also a distance on \mathbb{R} . Is f uniformly continuous w.r.t. this distance?
- 11. Show that a convergent sequence is a Cauchy sequence. Assume now that an extracted sequence of a Cauhcy sequence converges. Then show that the whole sequence converges. Let now $E = [0, \infty[$ and $d(x, y) = | \arctan(x) - \arctan(y) |$. Show that this a metric space. Show that $a_n = n^2$ is a Cauchy sequence. Does it converge?
- 12. Let $E = \{f : \mathbb{R} \to \mathbb{R}, f \ge 0, f \in C^0(\mathbb{R}; \mathbb{R}), f \text{ bounded}\}$, together with the distance $d(f, g) = \sup_{x \in \mathbb{R}} |f((x) g(x)|.$

Let $g \in E$ and $k \in C^0(\mathbb{R}^2; \mathbb{R}^+)$ such that there exists $\phi : \mathbb{R} \to \mathbb{R}$ integrable with

$$\forall x, y \in \mathbb{R}, k(x, y) \le \phi(y), \int_{\mathbb{R}} \phi(t) dt < 1$$

We look for $f \in E$ such that

$$\forall x \in \mathbb{R}, f(x) - \int_{\mathbb{R}} k(x, y) f(y) dy = g(x)$$

- (a) Show that (E, d) is a complete metric space.
- (b) Show that for all $u \in E$, $K(u) : x \in \mathbb{R} \mapsto \int_{\mathbb{R}} k(x, y)u(y)dy \in E$.
- (c) Using a fixed point, show that we have a unique solution f to the problem.
- 13. Let *X* be a subset of a metric space (E, d). Show that if *X* is pre-compact, then this is also the case for its closure \bar{X} .