

Optimal Overbooking Limits in Two-stage Capacity Allocation with Random Reservations and Show-ups

Keywords: overbooking, non-convex, stochastic gradient; Independent Research, supervised by Professor Xin Chen at UIUC

1. Background

Overbooking is an effective policy in hotel

4. Transformed Equivalent Convex Model^[2]

首届致远学术节

 $f(\boldsymbol{u}\wedge(\boldsymbol{x}+\boldsymbol{\Xi})) = \boldsymbol{r}^T(\boldsymbol{u}\wedge(\boldsymbol{x}+\boldsymbol{\Xi})) - \boldsymbol{r}^T\boldsymbol{x} - \boldsymbol{q}^T(\boldsymbol{u}\wedge(\boldsymbol{x}+\boldsymbol{\Xi})) + (\boldsymbol{q}\times\boldsymbol{p})^T(\boldsymbol{u}\wedge(\boldsymbol{x}+\boldsymbol{\Xi})) + g(\boldsymbol{u}\wedge(\boldsymbol{x}+\boldsymbol{\Xi}))$

学生科研成果展示

booking, airline, retailer and so on. It can increases the revenue.

- \checkmark It is solved by optimization.
- \checkmark It has lots of variations, e.g., static vs. dynamic; deterministic vs. stochastic; multi classes vs. single class. All these factors bring the **difficulty** in solving the model

2. Problem Statement Decision Variables ——Overbooking Limits

First period: reservation period

- ✓ positive dependent/independent random reservations (discrete)
- ✓ random show ups and cancellations at the end of this period

 $\max \mathbb{E}_{\Xi} \left[f \left(v_1(\Xi_1), \dots, v_n(\Xi_n) \right) \right]$

s.t. $v_i(\xi_i) \le x_i + \xi_i \quad \forall \xi_i \in \mathcal{X}_i, \quad \forall i = 1, \dots n$

 $(\mathbf{x}, v_1(\xi_1), \dots, v_n(\xi_n)) \in \mathcal{A}^{\Xi} \quad \forall \xi \in \mathcal{X}$

where $\mathcal{A}^{\Xi} = \{(x, u \land (x + \xi)) | u \ge x, \xi \in \mathcal{X}\}$. And we require $v_i(\cdot)$ is measurable.

5. Structural Properties

LEMMA 1. Function $V_0(\mathbf{Z})$ is submodular with respect to $(Z_1, ..., Z_n)$.

LEMMA 2. $V_0(\mathbf{Z})$ is jointly concave in Z_1, \ldots, Z_n and C_1, \ldots, C_m .

LEMMA 3. $g(u) = \mathbb{E}_{Z}[V_0(Z(u))]$ is twice continuously differentiable with regard to **u**.

THEOREM. For each i = 1, ..., n, the nonnegative random variable $\{Z_i(u_i)|u_i \ge 0\}$ has the semigroup property with respect to the parameter u_i , then the function, $g(\mathbf{u})$, is component-wise concave in each u_i , i = 1, ..., n, and submodular in (u_1, \ldots, u_n) .

Second period: service period

✓ Multiple reservation and inventory classes ✓ Allocation: network revenue management

3. Nonconvex Optimization Model

$$\max_{\boldsymbol{u} \geq \boldsymbol{x}} G(\boldsymbol{u}) = \mathbb{E}_{\Xi} \left[\boldsymbol{r}^{T} \left(\boldsymbol{u} \wedge (\boldsymbol{x} + \Xi) \right) - \boldsymbol{r}^{T} \boldsymbol{x} \right] - \mathbb{E}_{\Xi, \boldsymbol{Z}} \left[\boldsymbol{q}^{T} \left(\left(\boldsymbol{u} \wedge (\boldsymbol{x} + \Xi) \right) - \boldsymbol{Z} \right) \right] + \mathbb{E}_{\Xi, \boldsymbol{Z}} \left[V_{0}(\boldsymbol{Z}) \right]$$

where

$$(z_1, \dots, z_n) = \left(Z_1 \left(u_1 \wedge (x_1 + \xi_1) \right), \dots, Z_n \left(u_n \wedge (x_n + \xi_n) \right) \right)$$

 $V_0(\mathbf{z}) = \max \sum_{i=1}^{N} \sum_{j=0}^{N} a_{ij} y_{ij}$

s.t. $\sum_{i=0}^{m} y_{ii} = z_i, i = 1, ..., n$,

6. Numerical Experiments

	Parameter							
Experiment	Problem	Algorithm	Random Reservations	Capacity	Optin	nal bo	oking	limits
1	original	Stochastic Gradient	None	unknow	120	118	117	15
2	original	Stochastic Gradient	None	100	114	112	111	109
3	original	Stochastic Gradient	None	105	120	118	117	115
4	original	Stochastic Gradient	None	110	125	123	122	119
5	random reservations	Heuristic	[120, 130]	100	114	112	111	109
6	random reservations	Heuristic	{120, 121,130}	110	123	122	121	119
7	random reservations	Heuristic	{120, 121,124}	110	122	121	121	120
8	random reservations	Transformed	{120, 121,130}	110	125	123	122	120
9	random reservations	Transformed	{120, 121,124}	110	124	123	121	120

The stochastic gradient algorithm is coded in **Python using Gurobi** to solve the LP problems, implemented on Intel Core i5 CPU 2.4GHZ and **BGB memory**. Adaptive Step Size was not considered here, we used bu = 1/kfor simplicity. Each iteration solves n +network problems (linear program with O(mn + n) decision variables and D(m+n+1) constraints.

The algorithm requires a sequence of step sizes, $\{b_k\}$, satisfying $\sum_{k=0}^{\infty} b_k = +\infty$, $\sum_{k=0}^{\infty} b_k^2 < +\infty$; Then,

the algorithm proceeds as follows:

Step 0. Initialize: k = 1 and $u^k \coloneqq x$.

Step 1. Get the stochastic gradient:

- Randomly generate a new vector Ξ^k .
- Randomly generate a new vector $Z(u^k \wedge (x + \Xi^k))$.
- Compute the gradient estimate D^k .

Step 2. Compute the $u^{k+1} = \prod (u^k + b_k D^k)$, where $\prod (\cdot)$ is the projection of $u^k + b_k D^k$ onto

⁶	1	1	1	1	1	1	1	1	
									 heuristic transformed
5 -									
4 -									
3 -									
2 -			X		\wedge				
			\mathcal{H}	\frown		_	$\overline{}$		\wedge

