
个人信息：游宇榕（计算机科学方向2014级） 
邮       箱：yurongyou@sjtu.edu.cn

Motivation & Introduction
Reinforcement learning is considered as a promising direction for driving policy learning. 
However,  
•Training autonomous driving vehicles with reinforcement learning in real environment 
involves non-affordable trial-and-error. 

•One can first train the model in a virtual environment and then apply it in the real world. But 
gaps exist between the real and virtual environment, rendering the transferring 
intractable. 

In this paper, we propose a novel realistic translation network to make model trained in virtual 
environment more adaptable to real world scenario. The proposed framework exploits a key 
relation between non-realistic virtual images and real images: they all have similar scene 
structure. Though lacking proper paired data labeling virtual images with corresponding real 
images, their segmentation can serve as a proxy: we can first convert the virtual images into their 
scene segmentations, then convert the segmentations into real images, where paired training data 
are available in both part. 

Experiments show that our proposed virtual to real (VR) reinforcement learning (RL) works 
pretty well. To our knowledge, this is the first successful case of driving policy trained by 
reinforcement learning that can adapt to real world driving data.

Methods

Figure 1: Framework for virtual to real reinforcement learning (VRRL) for autonomous driving

Data
Data for Segmentation-to-real network: 
The real world driving video data are from [2], which is collected in a sunny day with detailed 
steering angle annotations per frame .We used the image semantic segmentation network design 
of [3] and their trained segmentation network on the CityScape image segmentation dataset to 
segment 45k real world driving images from [2]. The network was trained on the CityScape 
dataset with 11 classes and was trained with 30000 iterations. 

Data for Segmentation-to-real network: 
We collected virtual images and their segmentations from the Aalborg environment in TORCS 
[4]. A total of 1673 images were collected which covers the entire driving cycle of Aalborg 
environment.

Results
We performed two sets of experiments to compare the performance of our method and other 
reinforcement learning methods as well as supervised learning methods: 
1.virtual to real reinforcement learning on real world driving data.  
2.transfer learning in different virtual driving environments. 
The virtual simulator used in our experiments is TORCS [4]. 

Qualitative Result of Realistic Translation Network 
Representative results of our image translation network are shown in Figure. 2. The translation 
quality is satisfactory. 

Virtual to Real Reinforcement Learning on Real World Driving Data 
We train our RL model with a trained realistic translation network in virtual environment, and 
tested on a real world driving data to evaluate its steering angle prediction accuracy, results 
shown as follows. 

Results show that our proposed method outperforms the baseline method (B-RL), where the 
reinforcement training agent is trained in a virtual environment without seeing any real data. The 
supervised method (SV) has the best overall performance, however, was trained with large 
amounts of supervised labeled data. 

Transfer learning in Different Virtual Environments 
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Figure 3: Reinforcement learning network architecture. The network is an end-to-end net-
work mapping state representations to action probability outputs.

Figure 4: Examples of Virtual to Real Image Translation. Odd columns are virtual images
captured from TORCS. Even columns are synthetic real world images corresponding to vir-
tual images on the left.

3.1 Virtual to Real RL on Real World Driving Data
In this experiment, we trained our proposed reinforcement learning model with realistic
translation network. We first trained the virtual to real image translation network, and then
used the trained network to filter virtual images in simulator to realistic images. These real-
istic images were then feed into A3C to train a driving policy. Finally, the trained policy was
tested on a real world driving data to evaluate its steering angle prediction accuracy.

For comparison, we also trained a supervised learning model to predict steering angles
for every test driving video frame. The model is a deep neural network that has the same
architecture design as the policy network in our reinforcement learning model. The input of
the network is a sequence of four consecutive frames, the output of the network is the ac-
tion probability vector, and elements in the vector represent the probability of going straight,
turning left and turning right. The training data for the supervised learning model is differ-
ent from the testing data that is used to evaluate model performance. In addition, another
baseline reinforcement learning model (B-RL) is also trained. The only difference between

Figure 3: Examples of Virtual to Real Image Translation. 
 Odd Columns: virtual images, Even Columns: synthetic real world images

The overall pipeline is shown in Figure 1.  
Inspired by [1], our realistic translation network is composed of two image translation networks:  
1.virtual-to-segmentation network: translating virtual images to their segmentations 
2.segmentation-to-real network: translating segmented images to their real world counterparts 

These two networks are basically conditional GANs. The objective of a conditional GAN can be 
expressed as, 

where G is the generator that tries to minimize this objective and D is the adversarial 
discriminator that acts against G to maximize this objective. In order to suppress blurring, a L1 
loss regularization term is added. Therefore, the overall objective for the image-to-image 
translation network is, 

where λ is the weight of regularization. 

These two networks are both trained towards the above defined generator, where first network 
translates virtual images x to their segmentations s : G1 : {x,z1} → s, and the second network 
translates segmented images s into their realistic counterparts y : G2 : {s,z2} → y, where z1 ,z2 are 
noise terms to avoid deterministic outputs. We use the same generator and discriminator 
architectures as used in [1]. 

After training of the realistic translation network is finished, we train our reinforcement 
learning model by using it to filter virtual images to synthetic realistic images and feed these 
realistic images as state inputs. 

For more details about the proposed architecture, including network settings of translation 
networks and reinforcement learning models, please refer to our paper.
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where G is the generator that tries to minimize this objective and D is the adversar-
ial discriminator that acts against G to maximize this objective. In other words, G⇤ =
argminG maxDLcGAN(G,D). In order to suppress blurring, a L1 loss regularization term
is added, which can be expressed as,

LL1(G) = Ex,s⇠pdata(x,s),z⇠pz(z)[ks�G(x,z)k1]. (2)

Therefore, the overall objective for the image-to-image translation network is,

G⇤ = argmin
G

max
D

LcGAN(G,D)+lLL1(G), (3)

where l is the weight of regularization.
Our network consists of two image-to-image translation networks, both networks use

the same loss function as equation 3. The first network translates virtual images x to their
segmentations s : G1 : {x,z1} ! s, and the second network translates segmented images s
into their realistic counterparts y : G2 : {s,z2} ! y, where z1,z2 are noise terms to avoid
deterministic outputs. As for GAN neural network structures, we use the same generator and
discriminator architectures as used in [11].

2.2 Reinforcement Learning for Training a Self-Driving Vehicle
We use a conventional RL solver Asynchronous Advantage Actor-Critic (A3C)[18] to train
the self driving vehicle, which has performed well on various machine learning tasks. A3C
algorithm is a fundamental Actor-Critic algorithm that combines several classic reinforce-
ment learning algorithms with the idea of asynchronous parallel threads. Multiple threads
run at the same time with unrelated copies of the environment, generating their own se-
quences of training samples. Those actors-learners proceed as though they are exploring
different parts of the unknown space. For one thread, parameters are synchronized before an
iteration of learning and updated after finishing it. The details of A3C algorithm implemen-
tation can be found in [18].

In order to encourage the agent to drive faster and avoid collisions, we define the reward
function as

rt =

⇢
(vt · cosa �dist(t)center) ·b no collision,
g collision,

(4)

where vt is the speed (in m/s) of the agent at time step t, a is the angle (in rad) between
the agent’s speed and the tangent line of the track, and dist(t)center is the distance between the
center of the agent and the middle of the track. b ,g are constants and are determined at the
beginning of training. We take b = 0.006,g =�0.025 in our training.

3 Experiments
We performed two sets of experiments to compare the performance of our method and other
reinforcement learning methods as well as supervised learning methods. The first sets of
experiments involves virtual to real reinforcement learning on real world driving data. The
second sets of experiments involves transfer learning in different virtual driving environ-
ments. The virtual simulator used in our experiments is TORCS[30].
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Figure 2: Example image segmentation for both virtual world images (Left 1 and Left 2) and
real world images (Right 1 and Right 2).

learning framework.

2.1 Realistic Translation Network

As there is no paired virtual and real world image, a direct mapping from virtual world
image to real world image using [11] would be awkward. However, as these two types of
images both express driving scene, we can translate them by using scene parsing representa-
tion. Inspired by [11], our realistic translation network is composed of two image translation
networks, where the first image translation network translates virtual images to their seg-
mentations, and the second image translation network translates segmented images to their
real world counterparts.

The image-to-image translation network proposed by [11] is basically a conditional
GAN. The difference between traditional GANs and conditional GANs is that GANs learn a
mapping from random noise vector z to output image s : G : z ! s, while conditional GANs
take in both an image x and a noise vector z, and generate another image s : G : {x,z}! s,
where s is usually in a different domain compared with x (For example, translate images to
their segmentations).

The objective of a conditional GAN can be expressed as,

LcGAN(G,D) =Ex,s⇠pdata(x,s)[logD(x,s)]

+Ex⇠pdata(x),z⇠pz(z)[log(1�D(x,G(x,z)))],
(1)

Ours B-RL SV

Accuracy 43.40% 28.33% 53.60%

PAN,YOU,WANG,LU: VIRTUAL TO REAL REINFORCEMENT LEARNING 5

Figure 2: Example image segmentation for both virtual world images (Left 1 and Left 2) and
real world images (Right 1 and Right 2).

learning framework.

2.1 Realistic Translation Network

As there is no paired virtual and real world image, a direct mapping from virtual world
image to real world image using [11] would be awkward. However, as these two types of
images both express driving scene, we can translate them by using scene parsing representa-
tion. Inspired by [11], our realistic translation network is composed of two image translation
networks, where the first image translation network translates virtual images to their seg-
mentations, and the second image translation network translates segmented images to their
real world counterparts.

The image-to-image translation network proposed by [11] is basically a conditional
GAN. The difference between traditional GANs and conditional GANs is that GANs learn a
mapping from random noise vector z to output image s : G : z ! s, while conditional GANs
take in both an image x and a noise vector z, and generate another image s : G : {x,z}! s,
where s is usually in a different domain compared with x (For example, translate images to
their segmentations).

The objective of a conditional GAN can be expressed as,

LcGAN(G,D) =Ex,s⇠pdata(x,s)[logD(x,s)]

+Ex⇠pdata(x),z⇠pz(z)[log(1�D(x,G(x,z)))],
(1)

Figure 2: Data examples. Left: segmentation for a virtual image, Right: segmentation for a real image
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Figure 5: Transfer learning between different environments. Oracle was trained in Cgtrack2
and tested in Cgtrack2, so its performance is the best. Our model works better than the
domain randomization RL method. Domain randomization method requires training in mul-
tiple virtual environments, which imposes significant manual engineering work.

B-RL and our method is that the virtual world images were directly taken by the agent as
state inputs. This baseline RL is also tested on the same real world driving data.

Dataset. The real world driving video data are from [5], which is collected in a sunny
day with detailed steering angle annotations per frame. There are in total around 45k im-
ages in this dataset, of which 15k were selected for training the supervised learning model,
and another 15k were selected and held out for testing. To train our realistic translation net-
work, we collected virtual images and their segmentations from the Aalborg environment
in TORCS. A total of 1673 images were collected which covers the entire driving cycle of
Aalborg environment.

Scene Segmentation. We used the image semantic segmentation network design of [2]
and their trained segmentation network on the CityScape image segmentation dataset [7] to
segment 45k real world driving images from [5]. The network was trained on the CityScape
dataset with 11 classes and was trained with 30000 iterations.

Image Translation Network Training. We trained both virtual-to-parsing and parsing-
to-real network using the collected virtual-segmentation image pairs and segmentation-real
image pairs. The translation networks are of a encoder-decoder fashion as shown in figure 1.
In the image translation network, we used U-Net architecture with skip connection to connect
two separate layers from encoder and decoder respectively, which have the same output
feature map shape. The input size of the generator is 256⇥256. Each convolutional layer has
a kernel size of 4⇥4 and striding size of 2. LeakyReLU is applied after every convolutional
layer with a slope of 0.2 and ReLU is applied after every deconvolutional layer. In addition,
batch normalization layer is applied after every convolutional and deconvolutional layer.
The final output of the encoder is connected with a convolutional layer which yields output
of shape 3⇥ 256⇥ 256 followed by Tanh. We used all 1673 virtual-segmentation image
pairs to train a virtual to segmentation network. As there are redundancies in the 45k real
images, we selected 1762 images and their segmentations from the 45k images to train a
parsing-to-real image translation network. To train the image translation models, we used
the Adam optimizer with an initial learning rate of 0.0002, momentum of 0.5, batchsize of
16, and 200 iterations until convergence.

Reinforcement Training. The RL network structure used in our training is similar to

In this experiment, both the baseline 
(Randomization Method) and our model are 
trained in the Cg−track2 track and evaluate in 
E-track1 track, which has different visual 
appearance. 
Obviously, standard A3C (Oracle) trained and 
tested in the same environment gets the best 
performance. However, our model performs
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better than the domain randomization method, which requires training in multiple environments 
to generalize.
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