<u>物理化学(1)</u>课程教学大纲

Course Outline

课程基本信息(Course In	formation)						
课程代码 (Course Code)	CA124	*学时 (Credit Hours)	64	*学分 (Credits)	4.0		
*课程名称	物理化学(1)						
(Course Title)	Physical Chemistry(1)						
*课程性质		· · · · · · · · · · · · · · · · · · ·					
(Course Type)		_	必修课				
授课对象			2016 级致远化	学班			
(Target Audience) *授课语言							
汉林山口 (Language of Instruction)	中文						
*开课院系	77.) - W 72.						
(School)			致远学院				
先修课程							
(Prerequisite)			I				
授课教师	黑恩成 课程网址						
(Instructor)			(Course Webp	age)			
	作为一门必修基础课程,《物理化学》强调基础理论和方法。课程内容主要						
	分为三个部分: "平衡"介绍热力学三大定律以及物理化学平衡问题; "结构"						
	从量子力学的角度介绍原子分子的结构,各种波谱理论,以及微观结构与宏观性						
	质间的联系;"变化"部分研究微观、宏观动力学问题。作为一门必修的基础课,						
	《物理化学》需要照顾到理科化学学生对基础知识和化学学科发展的需要。和传						
	统的教学模式相比较,这门课程是原来的《结构化学》和《物理化学》两门课程						
*课程简介(Description)	的重新组合。内容中强化了统计力学和微观反应动力学等更基础的内容,减少了						
NATE NATIONAL PROPERTY.	固体化学,电化学,胶体与表面化学等专业性比较强的内容。其最直接的先行课						
	程是《化学原理》,定性讲授物理化学的基本原理。而在物理化学方向希望深入						
	学习的学生可以选修后续课程:《量子化学》,《固体化学》,《胶体与表面化学》。						
	 和本课程配套的实验课程是物理化学实验(一,二),实验课行课时间滞后一学						
	期。2016级现在要学习的内容就是第一部分《物理化学(1)》。						
				· · · · · · · · · · · · · · · · · · ·			

课程教学大纲(course syl	llabus)					
*学习目标(Learning Outcomes)	物理化学是化学科学中的核心课程,为化学各个学科的理论基础。学习物理化学的目的有两个: 1. 掌握物理化学的基本知识,加强对自然现象本质的认识,并为与化学有关的技术科学的发展提供基础; 2. 学习物理化学的科学思维方法,培养学生获得知识及用所学知识解决实际问题的能力。					
	教学内容	学时	教学方式	作业及要求	基本要求	考查方式
	绪论,物理化学内容框架;状态和状态函数;状态方程;有关状态函数的基本假定。流体的pVT状态图;气液相变;临界点;超临界流体;压缩因子。纯物质的相图及点线面的物理意义,亚稳平衡。	4	课堂授课 及讨论	P53 1, 2 3, 4		
*教学内容、进度安排及 要求 (Class Schedule	范德华方程;内压和己占体积; 范德华方程的应用;对比参数;对应 状态原理;普遍化压缩因子图。热力 学第一定律;体积功;热;热力学能; 焓;热力学标准状态。摩尔定容热容; 摩尔定压热容。标准摩尔相变焓及标 准摩尔相变焓随温度的变化;标准摩 尔反应焓,标准摩尔生成焓,标准摩 尔燃烧焓;标准摩尔熵;热性质数据 的来源。	4	课堂授课	P54 5, 7, 8, 10, 11, 12, 15		
&Requirements)	功与热的本质差别;可逆过程; 热力学第二定律的克劳修斯说法和开 尔文说法。卡诺循环和卡诺定理;卡 诺循环的热温商;任意循环过程的热 温商;克劳修斯不等式和可逆性判据。 熵的定义;熵的本质;熵增原理;不 可逆程度的度量。亥姆霍兹函数和吉 布斯函数;恒温过程;恒温恒容过程; 恒温恒压过程时克劳修斯不等式和可 逆性判据。	4	课堂授课	P109 2, 3, 4		
	热力学基本方程;麦克斯韦关系式;热力学图表。理想气体 pVT 变化中热力学函数的变化;焦耳实验;恒温过程;绝热过程;恒容过程与恒压过程;理想气体的恒温混合。非理想气体、液体、固体 pVT 变化中热力学	4	课堂授课	P109 5, 6, 7, 8, 9, 12,13, 14		

	1	Т	
函数的变化。焦耳一汤姆逊效应;焦 耳一汤姆逊系数;转变曲线。			
可逆相变化与不可逆相变化中热 力学函数的变化。热力学第三定律; 能斯特热定理;普朗克假设;标准摩 尔熵;化学反应中的热力学函数的变 化。克希霍夫方程;平衡判据;单元 系统的相平衡,克拉佩龙一克劳修斯 方程;能量有效利用。	4	课堂授课	P110 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26
(2) 讲座: 熵与能量。 多组分系统的热力学: 偏摩尔量的定义与物理意义; 偏摩尔量与摩尔量的区别; 集合公式; 吉布斯一杜亥姆方程; 偏摩尔量的实验测定。多相多组分系统的热力学基本方程; 化学势。	4	课堂授课	P147 1
平衡判据与平衡条件;相律及其推导:自由度定义;相律的应用。理想气体及其混合物中组分的化学势的表达式;实际气体、液体、固体及其混合物中组分的化学势的表达式;逸度的物理意义;逸度和逸度因子的求取;路易斯一兰德尔规则。;关于相律其他限制条件的讨论。拉乌尔定律;亨利定律。理想混合物;实际混合物;理想稀溶液。实际溶液中组分的化学势的表达式;惯例 I;惯例 II	4	(1)课堂 授课; (2)讲座 与讨论	P147 2, 3, 4 P148 5, 10, 11, 12
惯例III; 惯例IV。活度与活度因子的定义和求取; 活度与气液平衡; 活度与逸度; 不同惯例间活度因子的换算。渗透因子。两组分系统的气液平衡: 理想混合物的恒温相图和恒压相图; 正偏差系统的恒温相图和恒压相图; 最低恒沸点; 最低恒沸混合物; 负偏差系统的恒温相图和恒压相图。	4	课堂授课	P149 15, 16, 17, 19
相图点、线、面的物理意义;相律的应用;杠杆规则;精馏。两组分系统的液液平衡相图。 两组分系统的气液液平衡相图;过程 在相图上的表达;杠杆规则及应用。 部分互溶系统的精馏——两塔流程。	4	课堂授课	P192-193 1, 2, 3, 4, 5, 6, 7, 8
完全不互溶系统的气液液平衡的特点 及其应用。两组分系统的液固平衡相 图:相图的两种制作方法,冷却曲线;	4	课堂授课	P193-194 9, 10, 11

		Ī		
最低共熔点;最低共熔混合物。固相完全不互溶的两组分系统;固相完全不互溶且生成稳定化合物的系统;固相完全不互溶且生成不稳定化合物的系统;固相完全互溶或部分互溶的系统;固相完全互溶或部分互溶的系统;两组分系统的各类平衡相图的汇总。相平衡的热力学计算;三组分系统的液液平衡相图简介。				
标准平衡常数;标准摩尔反应吉氏函数。各类反应的标准平衡常数与实用平衡常数间的关系。应用平衡常数计算理论转化率;计算总压、配料比、惰性气体对平衡的影响。摩尔反应吉氏函数;亲和势;化学反应的等温方程;化学反应的平衡判据;温度对平衡常数的影响;范特霍夫方程;用热性质数据计算平衡常数。	4	(1)课堂 授课 (2)问题 研讨。	P219 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13	
电解质溶液中各组分的活度; 电解质作为整体的活度; 平均离子活度; 离子互吸理论。电解质溶液的导电机理; 法拉第定律; 电迁移率; 离子迁移数; 迁移数的实验测定; 电导率; 摩尔电导率; 无限稀释摩尔电导率; 离子的摩尔电导率; 离子独立运动定律。电导测定的其它应用: 计算弱电解质的解离度和解离平衡常数; 计算术的离子积; 简介电解质溶液传递性质的理论和半经验方法。	4	课堂授课	P664-665 2, 3, 4, 5, 7, 9 11, 14, 15, 16, 17, 18	
电化学反应的特征;原电池的书写惯例;原电池的电动势;界面电势差。电化学系统的热力学基本方程;电化学势;电化学平衡;电池反应的电势;电池反应的标准电势;能斯特方程;电池反应的温度系数。标准氢电极;电极反应的标准电势;电极反应的电势;电极反应的能斯特方程;电池反应的电势与电极反应电势的关系。	4	课堂授课	P715-716 1, 2, 3, 4	
(1) 电化学教学中的两个问题。 (2)各种类型的电极和标准电池:金属一金属离子电极;金属汞齐一金属 离子电极;铂一非金属一非金属离子 电极;氧化一还原电极;金属一微溶	4	课堂授课	P716-717 5, 6, 7, 10, 11, 12	

	盐一微溶盐的负离子电极;离子选择性电极;标准电池。 电池反应电势和电极反应电势的计算;化学反应热力学函数和标准平衡常数的计算;水的离子积、微溶盐溶度积和配合物不稳定常数的计算;离子平均活度因子的计算。电极浓差电池;溶液浓差电池;无液接电势的溶液浓差电势。极化现象;超电势;超电势的测定;活化超电势;传质超电势。化学电源;电解;电化学腐蚀与电化学保护。	4	课堂授课	P717 14, 15, 16, 18, 19, 20	
*考核方式 (Grading)	考核以考试为主,考试采用笔试的形式。考核以百分制记分。总成绩由考试卷面成绩和平时成绩构成,其中考试卷面成绩占80%,平时成绩占20%。平时成绩由三部分构成,即期中考试成绩占50%、作业占30%、出勤率占20%。				
*教材或参考资料 (Textbooks & Other Materials)	?				
其它 (More)	1. 在理工科的大学教学计划中,自然科学理论教学大致上有两个层次:一是通用理论层次,有数学、物理学、化学(含化学原理、无机化学、有机化学、分析化学、生物化学)、生物学、计算机科学等;二是专业理论层次。对于化学化工类来说,物理化学正处于两个层次之间,它在通用层次的基础上,进一步系统地阐述化学的理论,为后继专业课程如高等无机、高等有机、高等物化、化工原理,分离工程、反应工程、化学工艺学等,提供更直接的理论基础。因此可以说,在化学化工类教学计划的各种自然科学理论课程中,物理化学课程居于承上启下的枢纽地位。作为教师首先应对这样的地位和作用有一个明确的认识。 2. 物理化学的整个内容框架可以用"三个层次,两个部分,三种方法"来概括。为使学生在整体框架上把握物理化学学科内涵,并具有向纵深和前沿发展的扎实基础,框架结构必须完整清晰,教学内容可适当调节。物理化学作为化学的理论基础,虽然其内容是相对稳定的,但是仍在不断发展。教学过程中,应贯彻"少而精、博而通"的教学原则,不断进行知识的更新,突出应用。				

备注	
(Notes)	

备注说明:

- 1. 带*内容为必填项。
- 2. 课程简介字数为 300-500 字;课程大纲以表述清楚教学安排为宜,字数不限。