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Blue LEDs — Filling the world with new light

Isamu Akasaki, Hiroshi Amano and Shuji Nakamura are

rewarded for inventing a new energy—efficient and

environment—friendly light source - the blue
light-emitting diode (LED). In the spirit of Alfred Nobel,
the Prize awards an invention of greatest benefit to mankind;
by using blue LEDs, white light can be created in a new way.
With the advent of LED lamps we now have more long—lasting
and more efficient alternatives to older light sources.
When Akasaki, Amano and Nakamura arrive in Stockholm in
early December to attend the Nobel Prize ceremony, they will
hardly fail tonotice the light from their invention glowing
invirtually all the windows of the city. The white LED lamps
are energy—efficient, long—lasting and emit a bright white
light. Moreover, and unlike fluorescent lamps, they do not
contain mercury.

Red and green light-emitting diodes have been with us for
almost half a century, but blue light was needed to really
revolutionize lighting technology. Only the triad of red,
green and blue can produce the white light that illuminates
the world for us. Despite the high stakes and great
efforts undertaken in the research community as well as in
industry, blue light remained a challenge for three
decades.

Akasaki worked with Amano at Nagoya University while
Nakamura was employed at Nichia Chemicals, a small company
located in Tokushima on the island of Shikoku. When they
obtained bright blue light beams from their semiconductors,
the gates opened up for a fundamental transformation of
illumination technology. Incandescent light bulbs had lit
the 20th century; the 21st century will be 1it by LED lamps.

Saving energy and resources

semiconductor materials. In the LED, electricity is
directly converted
into light particles, photons, leading to efficiency gains
compared to other light sources where most of the
electricity is converted to heat and only a small amount
into light. In incandescent bulbs, as well as in halogen
lamps, electric current is used to heat a wire filament,
making it glow. In fluorescent lamps (previously referred
to as low—energy lamps, but with the advent of LED lamps
that label has lost its meaning) a gas discharge is produced
creating both heat and light.
Thus, the new LEDs require less energy in order to emit light
compared to older light sources.
Moreover, they are constantly improved, getting more
efficient with higher luminous flux (measured in lumen) per
unit electrical input power (measured in watt). The most
recent record is just over 300 lumen/watt, which can be
compared to 16 for regular light bulbs and close to 70 for
fluorescent lamps. As about one fourth of world electricity
consumption is used for lighting purposes, the highly
energy—efficient LEDs contribute to saving the Earth’ s
resources.
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material used. The LED is no larger than a
electron grain of sand.
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Blue LED lamp. The light-emitting diode

in this lamp consists of several different

layers of gallium nitride (GaN). By mixing
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anode cathode
(p-electrode) ~ [n-electrode] post J\

‘ [\ anvil
p-GaN ————— % N I
Zinc-doped InGaN: — .
n-AlGaN =
GaN
anode I
cathode

GaN Buffer Layer ——
Sapphire Substrate

The principle for a light-emitting diode - LED (upper left) and an example of a blue LED lamp.

Creating light in a semicondu

LEDs are also more long-lasting than other lamps.

Incandescent bulbs tend to last 1,000 hours, as heat
destroys the filament, while fluorescent lamps usually last
around 10, 000 hours. LEDs can last for 100, 000 hours, thus
greatly reducing materials consumption.

LED technology originates in the same art of engineering

that gave us mobile phones, computers and all modern



electronics equipment based on quantum phenomena. A
light-emitting diode consists of several layers: an n—type
layer with a surplus of negative electrons, and a p—type
layer with an insufficient amount of electrons, also
referred to as a layer with a surplus of positive holes.
Between them is an active layer, to which the negative
electrons and the positive holes are driven when an electric
voltage is applied to the semiconductor. When electrons and
holes meet they recombine and light is created. The light’
s wavelength depends entirely on the semiconductor; blue
light appears at the short-wave end of the rainbow and can
only be produced in some materials.

The first report of light being emitted from a semiconductor
was authored in 1907 by Henry J. Round, a co—worker of
Guglielmo Marconi, Nobel Prize Laureate 1909. Later on, in
the 1920s and 1930s, in the Soviet Union, Oleg V. Losev
undertook closer studies of light emission. However, Round
and Losev lacked the knowledge to truly understand the
phenomenon. It would take a few decades before the
prerequisites for a theoretical description of this
so—called electroluminescence were created.

The red light-emitting diode was invented in the end of the
1950s. They were used, for instance, in digital watches and
calculators, or as indicators of on/off-status in various
appliances. At an early stage it was evident that a
light-emitting diode with short wavelength, consisting of
highly energetic photons - a blue diode - was needed to
create white light. Many laboratories tried, but without

success.
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LED [amps require less power to emit light than the older light sources. Efficiency is denated in luminous flux (measured in lumen]
per unit added power (measured inwatt). As about one fourth of world electricity consumptionis used for lighting purposes, the
highly energy-efficient LED lamps contribute to saving the Earth’s resources

Challenging convention

The Laureates challenged established truths; they worked

hard and took considerable risks. They built their
equipment themselves, learnt the technology, and carried
out thousands of experiments. Most of the time they failed
but they did not despair; this was laboratory artistry at
the highest level.

Gallium nitride was the material of choice for both Akasaki
and Amano as well as for Nakamura, and they eventually
succeeded in their efforts, even though others had failed
the material was considered

before them. Early on,

appropriate for producing blue light, but practical
difficulties had proved enormous. No one was able to grow
gallium nitride crystals of high enough quality, since it
was seen as a hopeless endeavour to try to produce a fitting
surface to grow the gallium nitride crystal on. Moreover

it was virtually impossible to create p—type layers in this
material.

Nonetheless, Akasaki was convinced by previous experience
that the choice of material was correct, and continued
working with Amano, who was a Ph.D.-student at Nagoya
University. Nakamura at Nichia also chose gallium nitride
before the alternative, zinc selenide, which others
considered to be a more promising material.

Fiat lux - let there be light

In 1986, Akasaki and Amano were the first to succeed in
creating a high—quality gallium nitride crystal by placing
a layer of aluminium nitride on a sapphire substrate and
then growing the high quality gallium nitride on top of it.

A few years later, at the end of the 1980s, they made a
breakthrough in creating a p—type layer. By coincidence
Akasaki and Amano discovered that their material was
glowing more intensely when it was studied in a scanning
electron microscope. This suggested that the electronic
beam from the microscope was making the p—type layer more
efficient. In 1992 they were able to present their first
diode emitting a bright blue light.

Nakamura began developing his blue LED in 1988. Two years
later, he too, succeeded in creating high—quality gallium
nitride. He found his own clever way of creating the crystal
by first growing a thin layer of gallium nitride at low
temperature, and growing subsequent layers at a higher
temperature

Nakamura could also explain why Akasaki and Amano had
succeeded with their p-type layer: the electron beam
removed the hydrogen that was preventing the p—type layer
to form. For his part, Nakamura replaced the electron beam

with a simpler and cheaper method: by heating the material



he managed to create a functional p—type layer in 1992
Hence, Nakamura’ s solutions were different from those of
Akasaki and Amano.

During the 1990s, both research groups succeeded in further
improving their blue LEDs, making them more efficient. They
created different gallium nitride alloys using aluminium
or indium, and the LED’ s structure became increasingly
complex.

Akasaki, together with Amano, as well as Nakamura, also
invented a blue laser in which the blue LED, the size of
a grain of sand, is a crucial component. Contrary to the
dispersed light of the LED, a blue laser emits a
cutting—sharp beam. Since blue light has a very short
wavelength, it can be packed much tighter; with blue light
the same area can store four times more information than
with infrared light. This increase in storage capacity
quickly led to the development of Blu-ray discs with longer
playback times, as well as better laser printers

Many home appliances are also equipped with LEDs. They shine
their light on LCD-screens in television sets, computers
and mobile phones, for which they also provide a lamp and
a flash for the camera.

A bright revolution

The Laureates’ inventions revolutionized the field of
illumination technology. New, more efficient, cheaper and
smarter lamps are developed all the time. White LED lamps

can be created in two different ways. One way is to use blue

light to excite a phosphor so that it shines in red and green.

When all colours come together, white light is produced.
The other way is to construct the lamp out of three LEDs

red, green and blue, and let the eye do the work of combining
the three colours into white

LED lamps are thus flexible light sources, already with
several applications in the field of illumination -
millions of different colours can be produced; the colours
and intensity can be varied as needed. Colour—-ful light
panels, several hundred square metres in size, blink,
change colours and patterns. And everything can be
controlled by computers. The possibility to control the
colour of light also implies that LED lamps can reproduce
the alternations of natural light and follow our biological
clock. Greenhouse—cultivation using artificial light is
already a reality

The LED lamp also holds great promise when it comes to the
possibility of increasing the quality of life for the more

than 1.5 billion people who currently lack access to

electricity grids, as the low power requirements imply that
the lamp can be powered by cheap local solar power. Moreover,

polluted water can be sterilised using ultraviolet LEDs

a subsequent elaboration of the blue LED.

The invention of the blue LED is just twenty years old, but
it has already contributed to creating white light in an
entirely new manner to the benefit of us all.
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The principle of STED microscopy

Regular optical STED microscope

microscope
3 The final image gets a
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’I Ina STED microscope, an
annular laser beam quenches

The laser beams scan over the
sample. Since scientists know
exactly where the beam hits the
sample, they can use that informa-
tion to render the image at a much
In a reqular optical microscope, higher resolution.
the contours of a mitochondrion
can be distinguished, but the
resolution can never get better

than 0.2 micrometres. all fluorescence except that in

a nanometre-sized volume.
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