The c-fms Proto-oncogene Product Is Related to the Receptor for the Mononuclear Phagocyte Growth Factor, CSF-1

Charles J. Sherr,* Carl W. Rettenmier,* Rosalba Sacca,† Martine F. Roussel,* A. Thomas Look,* and E. Richard Stanley†

*Department of Tumor Cell Biology
St. Jude Children's Research Hospital
Memphis, Tennessee 38105
†Department of Microbiology and Immunology, and
Department of Cell Biology
Albert Einstein College of Medicine
Bronx, New York 10461

Summary

The feline c-fms proto-oncogene product is a 170 kd glycoprotein with associated tyrosine kinase activity. This glycoprotein was expressed on mature cat macrophages from peritoneal inflammatory exudates and spleen. Similarly, the receptor for the murine colony-stimulating factor, CSF-1, is restricted to cells of the mononuclear phagocytic lineage and is a 165 kd glycoprotein with an associated tyrosine kinase. Rabbit antisera to a recombinant v-fms-coded polypeptide precipitated the feline c-fms product and specifically cross-reacted with a 165 kd glycoprotein from mouse macrophages. This putative product of the murine c-fms gene exhibited an associated tyrosine kinase activity in immune complexes, specifically bound murine CSF-1, and, in the presence of the growth factor, was phosphorylated on tyrosine in membrane preparations. The murine c-fms proto-oncogene product and the CSF-1 receptor are therefore related, and possibly identical, molecules.

Introduction

Multiple and diverse etiologic agents of cancer have been proposed to act on a restricted subset of proto-oncogenes (or c-onc genes) that exhibit a latent potential for transforming cells and contributing to their malignant phenotype (Bishop, 1983; Heldin and Westermark, 1984). The normal role of these genes is presumably to regulate the processes of cell proliferation and differentiation by coding for products that describe critical steps in growth regulation. The term proto-oncogene may therefore be a misnomer, underscoring the role of these genes as determinants of malignant transformation rather than as elements defining a "mitogenic pathway." Of approximately two dozen proto-oncogenes now identified, one (c-sis) codes for a polypeptide chain of the platelet-derived growth factor (PDGF) (Waterfield et al., 1983; Doolittle et al., 1983), and another (c-erb B) is a cognate of the gene encoding the receptor for epidermal growth factor (EGF) (Downward et al., 1984). The EGF receptor is a member of the family of proteins that exhibit tyrosine-specific protein kinase activity (Ushiro and Cohen, 1980; Hunter, 1984). These enzymes have been identified as components of receptors for other polypeptide hormones, including PDGF (Ek et al., 1982; Nishimura et al., 1982), insulin (Kasuga et al., 1982), and the insulin-like growth factor 1 (Jacobs et al., 1983), as well as in several other viral transforming proteins including those specified by v-src, v-abl, v-fes/pts, v-ros, v-yes/igr, and v-fms (recently reviewed in Hunter, 1985). The relationship of the c-erb B product to the EGF receptor suggests that other retroviral oncogene products might similarly represent altered forms of cell surface receptors for regulatory growth factors.

The viral oncogene (v-fms) of the McDonough strain of feline sarcoma virus (SM-FeSV) encodes a 140 kilodalton (kd) integral transmembrane glycoprotein (gp140v-fms) (Anderson et al., 1982, 1984; Manger et al., 1984; Rettenmier et al., 1985b) whose expression at the cell surface is required for transformation (Roussel et al., 1984). The v-fms gene product exhibits biochemical and topological properties of known cell surface receptors. The mature glycoprotein is oriented in the plasma membrane with its glycosylated amino-terminal domain (approx. 450 amino acids) outside the cell and its carboxy-terminal domain (approx. 400 amino acids) in the cytoplasm (Hampe et al., 1984; Rettenmier et al., 1985b). Epitopes in the amino-terminal domain of gp140v-fms were detected on the surfaces of live transformed cells using fluorescent or peroxidase-labeled antibody conjugates (Anderson et al., 1984; Roussel et al., 1984; Manger et al., 1984; Rettenmier et al., 1985b), and the molecules were found to be associated with clathrin-coated pits and to gain access to endosomes (Manger et al., 1984). Nucleotide sequence analysis predicted that the cytoplasmic carboxy-terminal domain of the glycoprotein was closely related to sequences of prototypic tyrosine-specific protein kinases (Hampe et al., 1984); indeed, immune complexes prepared with antibodies to the v-fms product exhibit an associated tyrosine kinase activity that phosphorylates the glycoprotein in vitro (Barbacid and Lauver, 1981; Roussel et al., 1984).

The c-fms proto-oncogene is expressed at relatively high levels in cat spleen and at considerably lower levels in other cat tissues including bone marrow, liver, and brain. A 170 kd product of the c-fms gene identified in normal cat spleen was found to be a glycoprotein that functioned as a substrate in vitro for an associated tyrosine kinase (Rettenmier et al., 1985a). Because adult cat splenocytes consist predominantly of erythrocytes, lymphoid cells, mature granulocytes, and tissue macrophages, we reasoned that the c-fms proto-oncogene could encode a receptor for one of the known interleukins, erythroid growth factors, or granulocyte/macrophage-colony-stimulating factors (CSFs).

The macrophage growth factor, CSF-1, stimulates hematopoietic precursor cells to form colonies containing mononuclear phagocytes (Stanley and Guilbert, 1980). Unlike the granulocyte/macrophage-colony-stimulating factor and interleukin-3, which also directly induce mononuclear phagocyte proliferation (Burgess et al., 1977;
Figure 1. Expression of c-fms Gene Products in Cat Tissues

(Left) Acute inflammatory exudates were elicited by intraperitoneal inoculation of oyster glycogen into animals, and cells were recovered by peritoneal lavage (lanes A). Organs obtained at necropsy included spleen (lanes B), lymph nodes (lanes C), liver (lanes D), lung (lanes E), kidney (lanes F), and brain (lanes G). Tissue extracts were incubated either with control myeloma protein (lanes 1) or with a mixture of specific monoclonal antibodies (SM 2.6.3 and SM 5.15.4) to v-fms-coded epitopes (lanes 2). Washed immunoprecipitates were assayed for associated kinase activity, denatured, and run on polyacrylamide gels containing SDS. (Right) Homogenates of total spleen cell suspensions (lanes H) were centrifuged to yield soluble cytosolic proteins (lanes I) and a membrane fraction (lanes J). After addition of detergents, immunoprecipitates were prepared from freshly necropsied spleen, lymph nodes, liver, lung, kidney, and brain were immunoprecipitated with monoclonal antibodies to the v-fms-coded glycoprotein, and the washed precipitates were incubated for 10 min at 30°C with [γ-32P]ATP in the presence of buffer containing manganese ions. The phosphoprotein products were then denatured, separated by electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate (SDS), and detected by autoradiography. Similar experiments performed using extracts of cells from peritoneal inflammatory exudates are described in greater detail below. As shown in Figure 1 (left), relatively high levels of c-fms-coded products were detected in spleen (lanes B) and lymph node homogenates (lanes C), whereas lower levels were seen in liver (lanes D). As previously reported, two c-fms-coded glycoproteins of 170 and 130 kd were detected in positive tissues and represent differentially glycosylated forms of the polypeptide; only gp170c-fms is sensitive to neuraminidase digestion and therefore is presumed to represent a mature cell surface glycoprotein (Rettenmier et al., 1985a). Although cat brain homogenates exhibited high levels of endogenous kinases (lanes G), no specifically precipitated c-fms-coded products were demonstrated in this tissue or in lung (lanes E), kidney (lanes F), skeletal muscle, or cultured feline fibroblasts.

To determine whether the c-fms products were expressed in parenchymal splenocytes and to assay the glycoproteins for association with membranes, single cell suspensions were prepared from the spleen and mechanically disrupted in hypotonic buffer. After centrifugation to remove nuclei, a crude microsomal fraction was sedimented from the homogenate, treated with detergents to disrupt the vesicles, and tested for c-fms-associated kinase activity in an immune complex reaction. Figure 1 (right) shows that the relevant kinase activity detected in splenocytes (lanes H) was exclusively associated with the membrane preparation (lanes J), whereas no c-fms-related kinase was detected in the cytosol (lanes I).

Like gp140c-fms, gp170c-fms is phosphorylated on tyrosine in the immune complex kinase reaction (Rettenmier et al., 1985a).
The glycoproteins phosphorylated in immune complexes were separated electrophoretically. Gel slices were digested with trypsin. Eluted \([^{32}P] \) labeled peptides were spotted on cellulose-coated thin layer plates at the lower left corner of each panel and subjected to electrophoresis (left to right) and chromatography (bottom to top). Radiolabeled peptides were detected by autoradiography. Five major spots labeled A-D designate phosphopeptides that map in a linear order from the amino terminus to the carboxy terminus of gp140 \(v\)-fms labeled in vitro; spots C and C' are probably overlapping tryptic peptides that share a common amino acid sequence.

Since homogenates of unfractionated splenocytes were active in immune complex kinase reactions, we attempted to determine the differentiated phenotype of the cell(s) expressing the \(c\)-fms gene products. When spleen cells were fractionated by density in Percoll gradients, all of the \(c\)-fms-associated enzyme activity was recovered in a light density fraction (1.048–1.062 g/ml) composed primarily of granulocytes, macrophages, and large lymphoid cells, which together represented less than 5% of the total splenocytes (data not shown). Thus, only a minor spleen cell population lacking small lymphocytes and erythrocytes expressed the \(c\)-fms gene product. Because the population expressing gp170 \(c\)-fms included mature phagocytic elements, we reasoned that relatively pure populations of such cells could be more readily recovered from acute inflammatory exudates. Cats were therefore inoculated intraperitoneally with irritants (thioglycolate or glycogen), and inflammatory cells were collected from the peritoneal cavity 4 days later. Table 1 summarizes the results of two representative experiments. Thioglycolate induction (Experiment 1) resulted in an inflammatory exudate consisting primarily of polymorphonuclear leukocytes, with admixed macrophages, eosinophils, and other cell types (see Figure 4A), whereas glycogen infusion (Experiment 2) resulted in an exudate containing approximately equal numbers of granulocytes and macrophages. Lysates prepared from these cells were greatly enriched for \(c\)-fms-coded glycoproteins, which were readily detected in the immune complex kinase reaction (Figure 1A).

The specific monoclonal antibodies used in the kinase assays are directed to amino-terminal epitopes of the \(v\)-fms-coded glycoprotein (Rettenmier et al., 1985b). Cells from cat peritoneal exudates were therefore examined by fluorescence-activated flow cytometry for the presence of surface epitopes related to those of the \(v\)-fms gene product. As shown in Figure 3 (Experiment 1 of Table 1), a significant percentage of the cells in these exudates expressed surface antigens related to the \(v\)-fms gene product. No positive fluorescence was detected using an isotype-matched, control myeloma protein. The fluorescence-positive and -negative populations were separated cytometrically and examined morphologically. In each experiment, the fluorescence-negative population consisted almost entirely of granulocytic cells, whereas the positive population consisted almost exclusively of mature macrophages (Figures 4B and 4C and Table 1). Histochemical staining confirmed that the fluorescence-positive cells ex-
We suspected that the feline synthesize antibodies that precipitated the gene product might represent a hematopoietic growth factor receptor expressed at relatively high levels by mature differentiated cells of the mononuclear phagocytic lineage.

Antiseras to a Recombinant v-fms-Coded Protein Precipitate the Mouse e-fms Gene Product

We suspected that the feline e-fms gene product might represent a hematopoietic growth factor receptor expressed on macrophages, but we could not confidently assay possible ligands for receptor binding because the biological activities of CSFs and interleukins are often species-specific. Since many of the candidate growth factors have been purified and assayed in murine systems, we first attempted to prepare antisera that would cross-react among a variety of species, the antibody to feline gp170 c-fms. A portion of the c-fms-coded glycoprotein is expressed at relatively high levels by mature differentiated cells of the mononuclear phagocytic lineage. The rabbit antiserum to the recombinant v-fms-coded product precipitated three v-fms-specific glycoproteins from SM-FeSV-transformed cells metabolically labeled with [35S]methionine (Figure 5A). These three products are routinely detected at equivalent levels in SM-FeSV-transformed cells using either polyclonal rat antisera or specific monoclonal antibodies to v-fms-coded epitopes. The largest species of 180 kDa represents the cotranslationally glycosylated polypeptide (gP180 v-fms) that contains amino-terminal residues encoded by the FeSV gag gene and carboxy-terminal sequences specified by v-fms. Proteolysis removes the gag-coded portion of the polypeptide and generates a v-fms-coded glycoprotein, gp120 v-fms, which is the predominant form detected in transformed cells (Barbacid et al., 1982; Ruscetti et al., 1980). A small proportion of these molecules undergoes modification of its N-linked oligosaccharides in the Golgi complex, and appears as a glycoprotein of higher apparent molecular weight (gp140 v-fms) (Anderson et al., 1982, 1984). Only the latter form of the glycoprotein is detected at the cell surface (Anderson et al., 1984; Roussel et al., 1984; Manger et al., 1984). Figure 5B shows that the rabbit anti-bp81 v-fms sera were also active in an immune complex kinase assay performed with the precipitated v-fms-coded glycoproteins. In each case, gp180 v-fms, gp120 v-fms, and gp140 v-fms were phosphorylated in vitro; phosphoamino acid analysis confirmed that these molecules were radiolabeled exclusively on tyrosine residues (data not shown). To determine if the rabbit antiserum would detect the c-fms-coded glycoproteins as well, immune complex kinase reactions were carried out using lysates of cat peritoneal exudate cells. Both gp170 v-fms and gp130 v-fms were detected in amounts similar to those detected using monoclonal antibodies (Figure 5C).

The rabbit antiserum to bp81 v-fms cross-reacted with c-fms-coded molecules from other species, and in this respect differed from previously prepared immunological reagents. Several mouse macrophage cell lines were metabolically labeled with [35S]methionine, and the lysates were incubated with the rabbit antiserum. Figure 5D shows that each of three mouse macrophage cell lines ex-
The c-fms Product and CSF-1 Receptor

669

Figure 4. Morphology of Cat Peritoneal Exudate Cells
A stained cytospin preparation of unfractionated cells from Experiment 1 (Table 1) is shown in A. The cells consist of polymorphonuclear leukocytes (PMNs), macrophages, eosinophils, and erythrocytes. Sorted fluorescence-negative PMNs and eosinophils (B) and fluorescence-positive macrophages (C) were derived from the experiment shown in Figure 3. Quantitative differential counts for each population appear in Table 1 (Experiment 1). The inset in C shows positive histochemical staining for butyrate esterase.

pressed a major antigenically cross-reactive polypeptide of about 165 kd. Lesser amounts of a 130 kd protein were also detected; this form is apparently an immature glycosylated precursor of the 165 kd polypeptide. As previously described for the cat c-fms-coded glycoproteins (Rettenmier et al., 1985a), the major 165 kd polypeptide was sensitive to neuraminidase digestion and resistant to endoglycosidase H, whereas the minor 130 kd protein exhibited a reciprocal pattern of enzyme sensitivity (data not shown). The 165 kd and 130 kd glycoproteins were detected in macrophage cell lines that were either dependent (BAC1.2F5) or independent (P388D1, IC-21) of the mouse mononuclear phagocyte growth factor, CSF-1, for proliferation in culture. Both P388D1 and BAC1.2F5 have been shown to express high affinity CSF-1 binding sites (Guilbert and Stanley, 1980; Morgan and Stanley, 1984); IC-21 has not been similarly tested. When assayed in the kinase reaction, immunoprecipitates prepared with lysates of these mouse macrophages also contained an associated kinase activity that phosphorylated the mouse 165 kd and 130 kd polypeptides (Figure 5E). As shown in Figures 6A–6C, the immune complex kinase reaction yielded phosphotyrosine as the phosphorylated amino acid in the 165 kd and 130 kd glycoproteins from both CSF-1-dependent and -independent cells. Thus, the glycoproteins precipitated from mouse macrophage cell

Figure 5. Characterization of Rabbit Antisera to a Recombinant bp81 v-fms Polypeptide
(A) Proteins metabolically radiolabeled with [35S]methionine from untransformed mink CCL64 cells (lanes 1 and 2) and from an SM-FeSV-transformed subclone (lanes 3 and 4) were precipitated with preimmune (lanes 1 and 3) or immune (lanes 2 and 4) rabbit antiserum to bp81 v-fms. The positions of gp180 v-fms, gp120 v-fms, and gp140 v-fms are noted in the left margin.
(B) Immune complex kinase assays performed with mink cell lysates and a rabbit antiserum to bp81 v-fms. The cells and immune reagents are ordered as in A.
(C) Immune complex kinase assays performed with immunoprecipitates from extracts of cat peritoneal exudate cells elicited by thioglycolate inoculation. The precipitates were generated using a control myeloma protein (lane 1), a mixture of monoclonal antibodies (SM 2.6.3 and SM 5.15.4) to v-fms-coded epitopes (lane 2), preimmune rabbit serum (lane 3), and rabbit antiserum to bp81 v-fms (lane 4). The positions of gp170 v-fms and gp130 v-fms are noted in the right margin.
(D) Proteins from mouse macrophage cell lines metabolically-labeled with [35S]methionine and precipitated with rabbit antiserum to bp81 v-fms. Lanes 1, 3, and 5 show results with preimmune serum, and lanes 2, 4, and 6 with the immune serum. The cell lines examined included P388D1 (lanes 1, 2), IC-21 (lanes 3, 4), and BAC1.2F5 (lanes 5, 6). The positions of the mouse 165 kd and 130 kd proteins are indicated in the left margin.
(E) Immune complex kinase assays performed with mouse cell lysates and a rabbit antiserum to bp81 v-fms. The cells and immune reagents are ordered as in D.
Cell 670

Figure 6. Phosphoamino Acid Analyses of Murine Phosphoproteins Specifically Precipitated with Antiserum to bp81^v-mos

The 165 kd (A) and 130 kd (B) glycoproteins precipitated from the murine macrophage cell line P388D1, and the 165 kd glycoprotein (C) derived from the BAC1.2F5 cells, were phosphorylated in immune complex kinase reactions, separated by gel electrophoresis, and eluted from gel slices. The ^32P-labeled proteins were hydrolyzed in acid and subjected to two-dimensional electrophoresis on cellulose-coated plates. The origin is at the lower left. The identity of the labeled phosphoamino acids was determined by superimposing the autoradiograms over ninhydrin-stained spots containing authentic phosphoserine (S), phosphothreonine (T), and phosphotyrosine (Y). The mobility of orthophosphate (P=) is noted. The experiment in D shows similar results obtained with the BAC1.2F5 165 kd protein phosphorylated in membranes after stimulation with purified CSF-1; following phosphorylation in the presence of ligand (see Figure 7), the membranes were disrupted with detergent and the 165 kd phosphoprotein was specifically precipitated with rabbit antiserum to bp81^v-mos prior to phosphoamino acid analysis.

Rabbit Antiseras to the Recombinant v-fms Product React with the Mouse CSF-1 Receptor

The murine CSF-1 receptor is active as a tyrosine-specific protein kinase. Binding of CSF-1 to the purified receptor in the presence of [y^32P]ATP stimulates receptor autophosphorylation specifically on tyrosine (Yeung et al., unpublished data). When macrophage membrane preparations are similarly incubated with CSF-1 at 2°C, the phosphorylation of several other membrane proteins is also enhanced (P. T. Jubinsky, Y. G. Yeung, and E. R. Stanley, unpublished data). To test whether the murine c-fms-coded polypeptide and the CSF-1 receptor were related molecules, membranes prepared from CSF-1-dependent BAC1.2F5 mouse macrophages, previously shown to be positive for expression of the c-fms gene product (Figures 5D and 5E), were incubated with [y^32P]ATP in the presence or absence of purified CSF-1. When the proteins phosphorylated in vitro were electrophoretically separated in gels containing SDS, several different phosphoproteins were detected (Figure 7, lanes A). Enhanced phosphorylation was observed in the presence of CSF-1. In particular, a polypeptide with the molecular weight of the approximately 165 kd CSF-1 receptor kinase (Morgan and Stanley, 1984; Yeung et al., unpublished data) exhibited the greatest degree of CSF-1-in-
tion of this protein was clearly stimulated by purified phosphorylation. Portions of the phosphorylated protein. The same results were obtained with similar antisera from two other rabbits. In each case, phosphorylation of this protein was clearly stimulated by purified CSF-1. When the radiolabeled polypeptide was eluted from gels, hydrolyzed, and subjected to two-dimensional electrophoresis, the major amino acid phosphorylated in vitro was tyrosine (Figure 6D).

Table 2. Precipitation of the Solubilized CSF-1–Receptor Complex by Rabbit Antiserum to bp81v-fms

<table>
<thead>
<tr>
<th>Input Antigen (cpm)</th>
<th>No Serum (Rabbit #1)</th>
<th>Preimmune Immune</th>
<th>Preimmune Immune</th>
</tr>
</thead>
<tbody>
<tr>
<td>125I-CSF-1 alone</td>
<td>2326 ± 1640</td>
<td>3486 ± 1225</td>
<td>3999 ± 1416</td>
</tr>
<tr>
<td>125I-CSF-1 + receptor complex (22,300 cpm)</td>
<td>270 ± 33</td>
<td>386 ± 81</td>
<td>6263 ± 511</td>
</tr>
</tbody>
</table>

a Coprecipitations were performed using staphylococcal protein A. The results obtained using either preimmune or immune rabbit antisera were equivalent to those obtained without antisera and contained ~0.1% of the input radioactivity.
b An equivalent amount of solubilized membrane preparation obtained from cells that had been preincubated with an excess of unlabeled CSF-1 prior to binding with 125I-CSF-1 contained only 290 ± 8 cpm. There was no difference between the results obtained using immune and preimmune antiserum in immunoprecipitations performed with lysates from this sample.

To demonstrate unequivocally that the 165 kd phosphoprotein precipitated by rabbit antisera to bp81v-fms was the CSF-1 receptor, we assayed the ability of the antisera to precipitate receptor–ligand complexes. These experiments are based on the stability of the CSF-1–receptor complex to the detergents used to solubilize the receptor (Yeung et al., unpublished data). 125I-CSF-1 was bound to receptors on BAC1.2F5 cells by incubation at 2°C. The cells were washed to remove unbound 125I-CSF-1, and membrane fractions were then prepared, solubilized with detergents, and incubated with rabbit antisera to bp81v-fms. As shown in Table 2, 125I-CSF-1 was recovered from washed immunoprecipitates prepared with rabbit anti-bp81v-fms sera, but not from those prepared with nonimmune serum, and not from cells preincubated with unlabeled CSF-1. Control experiments showed that the rabbit antisera did not directly react with the purified radiolabeled hormone. These results indicated that specific receptor–ligand complexes between the 165 kd glycoprotein and 125I-CSF-1 were immunoprecipitated with rabbit antisera to the v-fms product. To confirm that the precipitated radioactive molecules represented intact CSF-1 molecules, the washed immunoprecipitates prepared with rabbit antisera to bp81v-fms were denatured and subjected to SDS gel electrophoresis in the presence or absence of a reducing agent. As shown in Figure 8, autoradiograms of these gels were essentially indistinguishable from those of similar gels prepared using purified 125I-CSF-1 (see figure legend for description of the polypeptides). Together with the results shown in Figure 7, these experiments establish that the CSF-1 receptor is antigenically and functionally related to the product of the c-fms proto-oncogene.

Discussion

The biochemical and topological properties of v-fms-coded glycoproteins previously suggested that the c-fms gene might code for a cell surface receptor (Anderson et al., 1984; Roussel et al., 1984; Manger et al., 1984; Rettenmier et al., 1985b). Using cell separation procedures, populations of mature cat macrophages isolated from acute inflammatory exudates and from spleen were shown to express high levels of the c-fms-coded glycoprotein, which were specifically detected either in the immune complex kinase reaction or by fluorescence-activated flow cytometry. Since CSF-1 is the only mononuclear phagocyte-specific growth factor described to date, the cellular distribution of the c-fms-coded glycoprotein suggested that it could represent the CSF-1 receptor. By producing rabbit antisera to a recombinant v-fms-coded product and testing mouse macrophage cell lines for the presence of precipitable kinase activity, we...
detected an antigenically cross-reactive glycoprotein of approximately 165 kd that was active as a tyrosine kinase and was similar in size to the feline c-fms product. This glycoprotein was shown to represent the murine CSF-1 receptor by two criteria. First, in assays performed with membrane preparations, the 165 kd protein was phosphorylated in vitro in the presence of purified CSF-1 and was specifically precipitated. Second, receptor–ligand complexes formed at the cell surface were recovered from membranes after detergent lysis, precipitated with the rabbit antiserum, and shown to contain 125I-CSF-1. These data indicate that the mouse c-fms gene product and the CSF-1 receptor are closely related, if not identical, proteins. Definitive evidence that these are the same molecules will require comparison of the amino acid sequences of the CSF-1 receptor and the murine c-fms gene product.

CSF-1 is a lineage-specific hematopoietic growth factor required for the survival, proliferation, and differentiation of cells of the mononuclear phagocyte series (precursor cell → monoblast → promonocyte → monocyte → macrophage) (reviewed in Stanley et al., 1983). The response to CSF-1 is pleiotropic and varies with the mononuclear phagocyte cell type. For example, cultured precursor cells are stimulated to survive, proliferate, and differentiate, whereas differentiated, nondividing macrophages are stimulated only to survive. The proliferation and survival of primary bone-marrow-derived macrophages in culture is strictly CSF-1 dependent (Tushinski et al., 1982). Removal of the growth factor from serum-containing cultures decreases the rate of DNA synthesis by more than 100-fold (Tushinski and Stanley, 1985). CSF-1 is required in the G0/G1 phase of the cell cycle for entry of cells into S phase (Tushinski and Stanley, 1985). However, S phase cells can complete the S, G2, and M phases of the cell cycle in the absence of the growth factor (Stewart, 1980). CSF-1 stringently regulates protein turnover by increasing the rate of protein synthesis and by decreasing the rate of protein degradation (Tushinski and Stanley, 1983). Macrophages exposed to CSF-1 exhibit morphological changes similar to those of other cells exposed to growth factors. These changes include stimulation of membrane ruffling and filopodia within 1 min of CSF-1 addition, followed within 15 min by the appearance of phase-lute vacuoles (Tushinski et al., 1982; R. J. Tushinski, P. W. Tynan, C. J. Morgan, and E. R. Stanley, unpublished observations).

CSF-1 appears to play an important role in the differentiation of primitive hemopoietic cells. In the absence of other growth factors, CSF-1 stimulates precursors of mononuclear phagocytes to proliferate and differentiate. However, in the presence of other hemopoietic growth factors (hemopoietin-1 or interleukin-3), CSF-1 can stimulate the proliferation and differentiation of even more primitive cells (Bartelmez et al., 1985; Bartelmez and Stanley, 1985). These more primitive cells possess low numbers of CSF-1 receptors and are likely to be multipotent (Bartelmez and Stanley, 1985; E. R. Stanley, T. R. Bradley, A. Bartocci, D. Patinkin, and M. Rosendaal, unpublished data). Their differentiation to mononuclear phagocyte precursors is associated with a 10-fold increase in the number of CSF-1 receptors expressed per cell (Bartelmez and Stanley, 1985). Elevated expression of the CSF-1 receptor may therefore represent the earliest marker of determination of cells to the mononuclear phagocyte lineage. Although the CSF-1 receptor is a differentiation-specific marker apparently restricted to mononuclear phagocytes and their precursors, c-fms transcripts have been detected in different organs including lymph nodes, liver, and brain (Rettenmier et al., 1985a) and in human tumors of various types (Slamon et al., 1984). The distribution of c-fms transcripts in normal tissues and in primary tumors could reflect the widespread presence of tissue macrophages. For example, the CSF-1 receptor is expressed in lymph nodes in approximately 0.5% of the total cells that correspond in their morphology and frequency to mononuclear phagocytes (Byrne et al., 1981). Similarly, phagocytic Kupffer cells in the liver are CSF-1-responsive (Chen et al., 1979). Transcripts of c-fms have also been detected in placenta and in choriocarcinoma cell lines (Muller et al., 1983a, 1983b). At present, it is unclear whether c-fms expression in these cells is characteristic of cell lineages other than mononuclear phagocytes. It is clearly of interest to determine whether these other cell types express a functional CSF-1 receptor.

Major portions of the human (Heisterkamp et al., 1983; Roussel et al., 1983) and feline (Verbeek et al., 1985) c-fms proto-oncogenes have already been molecularly cloned. In man, the c-fms locus has been assigned to the distal long arm of human chromosome 5 (Groffen et al., 1983; Roussel et al., 1983). Deletions involving this region of the chromosome have been detected in the "5q−" syndrome, a pleiotropic hematopoietic disorder consisting of refractory anemia, mild myeloid hyperplasia, the presence of hyperlobulated bone marrow megakaryocytes, and peripheral thrombocytosis (Sokal et al., 1975; Kerthofs et al., 1982). Patients with the 5q− syndrome frequently present with one abnormal and one normal chromosome 5 in their mitotic bone marrow cells, suggesting that the c-fms gene could be hemizygous (Nienhuis et al., Cell, September 1985, in press). Intriguingly, a high percentage of these patients eventually develop myelogenous leukemia (Wilsnewski and Hirschhorn, 1983). The target cell specificity of the McDonough strain of feline sarcoma virus offers no immediate clue to the role of the c-fms gene product in normal cells. SM-FeSV was isolated from a multicentric fibrosarcoma of a young domestic cat (McDonough et al., 1971) and was reported to induce fibrosarcomas when inoculated into animals (reviewed in Hardy, 1981). The virus is able to transform both fibroblastic cell lines (e.g., NIH 3T3, NRK) and epithelial cell lines (e.g., mink CCL64) in culture, but transforms fibroblasts at considerably higher efficiency (M. F. Roussel and C. J. Sherr, unpublished data). To date, SM-FeSV has not been implicated in hematopoietic neoplasms, nor has it been shown to transform hematopoietic cells in clonal assays. If the v-fms gene product represents an aberrant form of the CSF-1 receptor, it must provide abnormal receptor-mediated signals, since neither fibroblasts nor epithelial cells require CSF-1 for growth. Like the v-erb B gene, which represents a truncated form of the EGF...
receptor (Downward et al., 1984; Ullrich et al., 1984; Lin et al., 1984; Xu et al., 1984), v-fms could code for a protein with a constitutively active kinase domain that is hormone independent. However, the v-fms-coded glycoprotein appears to contain an almost complete extracellular domain (approx. 450 amino acids) which could, in principle, interact with a constitutively active kinase domain that is hormone et al., 1984; Xu et al., 1984), transformed target cells. If this were the case, the mechanism of viral transformation could depend on transduction of a competent receptor gene. The data argue against the hypothesis that proto-oncogenes are restricted in their expression to cells that act as targets for their viral oncogene counterparts. Instead, activated oncogenes appear to be more promiscuous in their function than their proto-oncogene progenitors. Clearly, alterations in these genes as a result of retroviral transduction can significantly affect their regulation and sites of action.

Experimental Procedures

Cells and Culture Conditions

The transformed mink lung cell line G2M (Frankel et al., 1979) contains proto-oncogene progenitors. Clearly, alterations in these genes as a result of retroviral transduction can significantly affect their regulation and sites of action.

Preparation of Macrophage Membranes

The murine macrophage cell line BAC1 was derived from adherent BALB/c x A/CA F1 murine spleen cells by transfection with origin-defective SV40 DNA. BAC1 cells are CSF-1 dependent for growth, express the la antigen and Fc receptor, secrete interleukin-1, produce lysozyme, collagenase, and esterase, and are capable of Fc-mediated phagocytosis (Schwarzbaum et al., 1984). The BAC1.25FS clone, chosen because of its inability to grow in the absence of CSF-1 as well as its rapid proliferation in the presence of this growth factor (C. J. Morgan, J. W. Pollard, and E. R. Stanley, unpublished data), was used for the experiments described here. Cells were grown in α-minimal essential medium containing 15% fetal calf serum and 3000 units/ml of stage I cell CSF-1. They were routinely passaged at a dilution of between 1:4 and 1:10 after being scraped from the culture dish with a rubber policeman.

Two other CSF-1-independent mouse macrophage lines were used for immune complex kinase assays. These included P815 D1 and IC-21, described in detail elsewhere (Walker, 1980). The cells were grown in RPMI 1640 containing 10% fetal calf serum, forced through a fine mesh metal strainer, and allowed to settle by gravity for 5 min. The supernatant fluid containing single cells was passed through a 21 gauge needle and the cells were pelleted at 800 x g for 5 min. Cells were suspended at 5 x 10^6/ml and layered over Percoll gradients (Pharmacia) prepared in Hank's balanced salt solution (Gibco). One milliliter of cells was layered on each of ten 45 ml gradients containing a 5 ml bottom cushion of 70% Percoll, and a continuous 40 ml gradient from 60% to 20% Percoll. The gradients were centrifuged at 1000 x g for 20 min, and fractions containing cells were morphologically characterized in cytosin preparations stained with Giemsa. The gradients were calibrated using colored marker beads of known density (Pharmacia); the cells containing maximal c-fms-associated kinase activity were recovered at a density of 1.048-1.062 g/ml. For preparation of acute inflammatory exudates, cats were inoculated intraperitoneally with 50 ml of oyster glycogen (10 mg/ml) or with 50 ml of Brewer's thioglycolate broth (Conrad, 1983), and cells were recovered by peritoneal lavage 4 days later. Between 4 x 10^5 and 2 x 10^6 cells were obtained from each animal, and consisted primarily of polymorphonuclear leukocytes and macrophages (cf. Figure 4 and Table 1). The cells were washed in DMEM containing 10% FCS and incubated with monononal antibody SM 2.63 prior to addition of fluorescein-conjugated goat antiserum to rat immunoglobulin. All incubations were performed in the presence of 3% normal cat plasma to abolish nonspecific antibody binding to Fc receptors. The cells were sorted on an Epics V flow cytometer at a rate of 500 cell/sec; dead cells labeled with propidium iodide were excluded from the analysis. Detailed procedures for fluorescence staining and flow cytometry are published elsewhere (Roussel et al., 1984).

Preparation of Macrophage Membranes

BAC1.25FS macrophage membranes were prepared according to a procedure of Yeung et al. (unpublished). Cells were collected in phosphate-buffered normal saline (pH 7.4) containing 4 mM dodecyl sulfate acid (IAA) and 1 mM EGTA [PBS-IAA] by scraping them from the culture dishes with a rubber policeman. They were centrifuged and collected in 5 pellet volumes of PBS-IAA. After assessing the viability by trypan blue exclusion, the cells (>90% viable) were centrifuged and resuspended in 8 pellet volumes of ice-cold hypotonic buffer (5 mM Tris·HCl [pH 8.0], 75 mM sucrose, 1 mM IAA, 0.5 mM EGTA, 10 μg/ml leupeptin [Sigma Chemicals], 0.5 units/ml aprotinin [Sigma], and 1000 units/ml soybean trypsin inhibitor Type 1S [Sigma]). Cells were allowed to swell on ice for 15 min and were disrupted in a Dounce homogenizer with a tight fitting pestle. When >90% of the cells were broken, 0.25 vol of compensating buffer (20 mM Tris·HCl [pH 7.4], 0.05 M sucrose, 26 mM EDTA) was added.
MgCl₂, 5 mM EDTA, 0.15 M NaCl, and 0.15 M KC1 was added to make the mixture isocionic. The homogenate was centrifuged at 2000 rpm for 45 sec after attaining speed to sediment the nuclei. The nuclear pellet was washed with a mixture of 1 part hypotonic buffer and 0.25 parts compensating buffer and recentrifuged. Pooled postnuclear supernanta fluid were layerd over ice-cold 15% sucrose solution containing 0.1 M Tris-HCl (pH 7.4), 5 μg/ml leupeptin, 0.5 unit/ml aprotinin, and 100 units/ml soybean trypsin inhibitor in SW32 polycilum centrifuge tubes (Beckman), and centrifuged at 115,000 × g for 30 min at 4°C. The membrane pellet was then resuspended in 10–20 vol of 25 mM Hepes (pH 7.4) and disagggregated using a Dounce homogenizer with a loose fitting pestle.

Assay for CSF-1-Induced Membrane Phosphorylation
Membranes (30–60 μg protein) were incubated for 8 min at 4°C in 25 mM Hepes buffer (pH 7.4) containing 10 units/ml of purified CSF-1, 15 mM NaCl, 300 mM NaCl, and 20 μM [3H]ATP (3000 Ci/mmol; Amersham) in a final reaction volume of 50 μl. The reaction was terminated by addition of concentrated electrophoresis sample buffer containing SDS and loaded directly on polyacrylamide gels. Alternatively, the reaction was terminated by addition of 10 μl of 120 mM ATP, followed by solubilization in RIPA buffer (50 mM Tris-HCl [pH 7.4], containing 150 mM NaCl, 20 mM EDTA, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, and 2% aprotinin) for immunoprecipitation.

Purification of Receptor-Ligand Complexes Containing Radiolabeled CSF-1
L cell CSF-1 was purified as previously described (Stanley and Heard, 1977; Stanley and Guilbert, 1981). Purity was checked by SDS gel electrophoresis under reducing and nonreducing conditions and by complexing with rabbit anti-CSF-1 antibodies (Stanley and Heard, 1977; Stanley and Guilbert, 1981). CSF-1 concentration was determined by radiomunnoassay (Stanley, 1979). One unit of CSF-1 is approximately equivalent to 0.44 fmol of CSF-1 protein. The purified CSF-1 was labeled with carrier-free 125I (Amersham) with full retention of biological activity to a specific radioactivity of 400,000 cpm/ng of protein (Stanley, 1979; Stanley and Guilbert, 1981). Cells were incubated at 2°C with 50 μM 125I-CSF-1 for 2 hr. Alternately, they were preincubated with 2.5 mM purified CSF-1 for 1 hr followed by incubation with 50 μM 125I-CSF-1 for 2 hr. After incubation, dishes were washed twice with ice-cold phosphate-buffered normal saline, and the cells were scrapped from plates with a rubber policeman. Membranes were purified by the cells as described above, disrupted in RIPA buffer, and subjected to immunoprecipitation using rabbit antiserum to bp81v-fms.

Other Analytical Methods
The procedures for metabolic radiolabeling of cell lines, preparation of cell lysates, immunoprecipitation, the immune complex kinase assay, immunoblotting, peptide mapping (Roussel et al., 1984), and phosphoamino acid analysis (Rettnermier et al., 1985a) are described in detail in the references cited.

Acknowledgments
We thank Drs. William S. Walker, Wayne L. Furman, Richard A. Ashmun, Carl W. Jackson, J. H. Chen, Stephen C. Peiper, and Mary H. Walker for advice and assistance with some of the experiments. Shawn Hawkins Kramer, Jean McLarty Elmeldorf, Virgil P. Holder, Claudia Sazs, and Michael Strain provided excellent technical support. We are grateful to Drs. Arthur W. Nienhuys, Thomas F. Deuel, and Joseph V. Simone for helpful discussions and encouragement, to Peggy L. Burdick for secretarial assistance, and to the Department of Photography, St. Jude Children's Research Hospital. We also acknowledge the generous gifts of purified growth factors from Drs. David W. Goide, Ali L. Goldstein, Alix Kurnat, Keith Humphries, Allen C. Eaves, James N. Ihle, Peter T. Lomedico, Anna M. Skalka, and Patrick W. Town, and rabbit antisera to the EGF receptor kindly provided by Dr. Graham Carpenter. This work was supported by grants CA 38197 (C. J. S.) and CA 26504 (E. R. S.) from the National Cancer Institute; by Cancer Center (Core) grant CA-21765 (St. Jude); by an AECOM Cancer Center (Core) grant (Albert Einstein College of Medicine, E. R. S.); and by the American Lebanese Syrian Associated Charities of St. Jude Children's Research Hospital. E. R. S. is a recipient of an Irma T. Hirschl Career Scientist Award, C. W. R. was supported by a Biomedical Research Support grant (1R05584-20) from the National Institutes of Health, and R. S. was supported by NIH training grant CA 09173.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received May 7, 1985

References

