

# **Optimal Overbooking Limits in Two-stage Capacity Allocation with Random Reservations and Show-ups**

Keywords: overbooking, non-convex, stochastic gradient; Independent Research, supervised by Professor Xin Chen at UIUC

## 1. Background

Overbooking is an effective policy in hotel

4. Transformed Equivalent Convex Model<sup>[2]</sup>

首届致远学术节

 $f(\boldsymbol{u}\wedge(\boldsymbol{x}+\boldsymbol{\Xi})) = \boldsymbol{r}^T(\boldsymbol{u}\wedge(\boldsymbol{x}+\boldsymbol{\Xi})) - \boldsymbol{r}^T\boldsymbol{x} - \boldsymbol{q}^T(\boldsymbol{u}\wedge(\boldsymbol{x}+\boldsymbol{\Xi})) + (\boldsymbol{q}\times\boldsymbol{p})^T(\boldsymbol{u}\wedge(\boldsymbol{x}+\boldsymbol{\Xi})) + g(\boldsymbol{u}\wedge(\boldsymbol{x}+\boldsymbol{\Xi}))$ 

学生科研成果展示

booking, airline, retailer and so on. It can increases the revenue.

- $\checkmark$  It is solved by optimization.
- $\checkmark$  It has lots of variations, e.g., static vs. dynamic; deterministic vs. stochastic; multi classes vs. single class. All these factors bring the **difficulty** in solving the model

### 2. Problem Statement Decision Variables ——Overbooking Limits

### **First period: reservation period**

- ✓ positive dependent/independent random reservations (discrete)
- ✓ random show ups and cancellations at the end of this period

 $\max \mathbb{E}_{\Xi} \left[ f \left( v_1(\Xi_1), \dots, v_n(\Xi_n) \right) \right]$ 

s.t.  $v_i(\xi_i) \le x_i + \xi_i \quad \forall \xi_i \in \mathcal{X}_i, \quad \forall i = 1, \dots n$ 

 $(\mathbf{x}, v_1(\xi_1), \dots, v_n(\xi_n)) \in \mathcal{A}^{\Xi} \quad \forall \xi \in \mathcal{X}$ 

where  $\mathcal{A}^{\Xi} = \{(x, u \land (x + \xi)) | u \ge x, \xi \in \mathcal{X}\}$ . And we require  $v_i(\cdot)$  is measurable.

### **5. Structural Properties**

LEMMA 1. Function  $V_0(\mathbf{Z})$  is submodular with respect to  $(Z_1, ..., Z_n)$ .

LEMMA 2.  $V_0(\mathbf{Z})$  is jointly concave in  $Z_1, \ldots, Z_n$  and  $C_1, \ldots, C_m$ .

LEMMA 3.  $g(u) = \mathbb{E}_{Z}[V_0(Z(u))]$  is twice continuously differentiable with regard to **u**.

THEOREM. For each i = 1, ..., n, the nonnegative random variable  $\{Z_i(u_i)|u_i \ge 0\}$  has the semigroup property with respect to the parameter  $u_i$ , then the function,  $g(\mathbf{u})$ , is component-wise concave in each  $u_i$ , i = 1, ..., n, and submodular in  $(u_1, \ldots, u_n)$ .

### **Second period: service period**

✓ Multiple reservation and inventory classes ✓ Allocation: network revenue management

# **3. Nonconvex Optimization Model**

$$\max_{\boldsymbol{u} \geq \boldsymbol{x}} G(\boldsymbol{u}) = \mathbb{E}_{\Xi} \left[ \boldsymbol{r}^{T} \left( \boldsymbol{u} \wedge (\boldsymbol{x} + \Xi) \right) - \boldsymbol{r}^{T} \boldsymbol{x} \right] - \mathbb{E}_{\Xi, \boldsymbol{Z}} \left[ \boldsymbol{q}^{T} \left( \left( \boldsymbol{u} \wedge (\boldsymbol{x} + \Xi) \right) - \boldsymbol{Z} \right) \right] + \mathbb{E}_{\Xi, \boldsymbol{Z}} \left[ V_{0}(\boldsymbol{Z}) \right]$$

where

$$(z_1, \dots, z_n) = \left( Z_1 \left( u_1 \wedge (x_1 + \xi_1) \right), \dots, Z_n \left( u_n \wedge (x_n + \xi_n) \right) \right)$$

 $V_0(\mathbf{z}) = \max \sum_{i=1}^{N} \sum_{j=0}^{N} a_{ij} y_{ij}$ 

s.t.  $\sum_{i=0}^{m} y_{ii} = z_i, i = 1, ..., n$ ,

### **6.** Numerical Experiments

|            | Parameter           |                     |                     |          |       |        |       |        |
|------------|---------------------|---------------------|---------------------|----------|-------|--------|-------|--------|
| Experiment | Problem             | Algorithm           | Random Reservations | Capacity | Optin | nal bo | oking | limits |
| 1          | original            | Stochastic Gradient | None                | unknow   | 120   | 118    | 117   | 15     |
| 2          | original            | Stochastic Gradient | None                | 100      | 114   | 112    | 111   | 109    |
| 3          | original            | Stochastic Gradient | None                | 105      | 120   | 118    | 117   | 115    |
| 4          | original            | Stochastic Gradient | None                | 110      | 125   | 123    | 122   | 119    |
| 5          | random reservations | Heuristic           | [120, 130]          | 100      | 114   | 112    | 111   | 109    |
| 6          | random reservations | Heuristic           | {120, 121,130}      | 110      | 123   | 122    | 121   | 119    |
| 7          | random reservations | Heuristic           | {120, 121,124}      | 110      | 122   | 121    | 121   | 120    |
| 8          | random reservations | Transformed         | {120, 121,130}      | 110      | 125   | 123    | 122   | 120    |
| 9          | random reservations | Transformed         | {120, 121,124}      | 110      | 124   | 123    | 121   | 120    |

The stochastic gradient algorithm is coded in **Python using Gurobi** to solve the LP problems, implemented on Intel Core i5 CPU 2.4GHZ and **BGB memory**. Adaptive Step Size was not considered here, we used bu = 1/kfor simplicity. Each iteration solves n +network problems (linear program with O(mn + n) decision variables and D(m+n+1) constraints.

The algorithm requires a sequence of step sizes,  $\{b_k\}$ , satisfying  $\sum_{k=0}^{\infty} b_k = +\infty$ ,  $\sum_{k=0}^{\infty} b_k^2 < +\infty$ ; Then,

the algorithm proceeds as follows:

Step 0. Initialize: k = 1 and  $u^k \coloneqq x$ .

Step 1. Get the stochastic gradient:

- Randomly generate a new vector  $\Xi^k$ .
- Randomly generate a new vector  $Z(u^k \wedge (x + \Xi^k))$ .
- Compute the gradient estimate  $D^k$ .

Step 2. Compute the  $u^{k+1} = \prod (u^k + b_k D^k)$ , where  $\prod (\cdot)$  is the projection of  $u^k + b_k D^k$  onto

| <sup>6</sup> | 1 | 1 | 1             | 1        | 1        | 1 | 1             | 1 |                                                    |
|--------------|---|---|---------------|----------|----------|---|---------------|---|----------------------------------------------------|
|              |   |   |               |          |          |   |               |   | <ul> <li>heuristic</li> <li>transformed</li> </ul> |
| 5 -          |   |   |               |          |          |   |               |   |                                                    |
| 4 -          |   |   |               |          |          |   |               |   |                                                    |
| 3 -          |   |   |               |          |          |   |               |   |                                                    |
| 2 -          |   |   | X             |          | $\wedge$ |   |               |   |                                                    |
|              |   |   | $\mathcal{H}$ | $\frown$ |          | _ | $\overline{}$ |   | $\wedge$                                           |

