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Optimal Overbooking Limits in Two-stage Capacity Allocation with
Random Reservations and Show-ups
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1. Background 4. Transformed Equivalent Convex Model!*]
v Overbooking is an effective policy in hotel fluAx +8) = rT(uA(x + B)) — r"x — q" (uA(x + E)) + (gxp)" (uA(x + E)) + g(uA(x + E))
booking, airline, retailer and so on. It can max Ez[f (v, B, .., vn E))]

increases the revenue.
v It is solved by optimization. st. vi(§)) <x+§ VEEX, Vi=1,..n

v' It has lots of wvariations, e.g., static vs. =.
. . e . . (xl vl(gl)l ---;Vn(zn)) € A" VE €X
dynamic; deterministic vs. stochastic; multi

classes vs. single class. All these factors bring where AE = {(x,uM(x + £))|u = x,% € X}. And we require v; () is measurable.
the difficulty in solving the model

5. Structural Properties

2. Problem Statement LEMMA 1. Function Vy(Z) is submodular with respect to (Z, ..., Z,).

Decision Variables Overbooking Limits LEMMA 2. Vo(Z) is jointly concave in Z, ..., Z,, and cq, ..., Cpy,.

First period: reservation period LEMMA 3. g(u) = Ez|Vy(Z(w))] is twice continuously differentiable with

v'positive  dependent/independent random

reservations (discrete)
vrandom show ups and cancellations at the THEOREM. For each i1=1,..n, the nonnegative random variable

end of this period

regard to U.

{Z;(uy)|u; = 0} has the semigroup property with respect to the parameter u;,

. . . then the function,g(W), is component-wise concave in each u;, i =1,... n, and
Second period: service period It g(u), P i : :

v'Multiple reservation and inventory classes submodular in (U4, ..., Uy).
v’ Allocation: network revenue management

6. Numerical Experiments

Parameter

The stochastic gradient algorithm is
coded in Python wusing Gurobi to

Experiment Problem Algorithm Random Reservations  Capacity Optimal booking limits

1 original Stochastic Gradient None unknow 120 118 117 15 .
. s . , . et Gradi . 0 114 11 111 100 solve the LP problems, implemented
origina tochastic Gradient one .
3. Nonconvex Optlle ation Model ,, oo on Intel Core i5 CPU 2.4GHZ and
3 original Stochastic Gradient None 105 120 118 117 115 8GB Ad . S S .
4 original Stochastic Gradient None 110 125 123 122 119 me.lzllor}(’i h aptlve teg blZC V;]?]i
_ _ . - not considered here, we used pu =
max G (u) = IEg[rT(u Alx + :‘)) _ rTx] — Egg [qT ((u Alx + ___.')) _ Z)] + Eg z[Vo(2)] 5 random reservations Heuristic [120, 130] 100 114 112 111 109 8 B N, N e
ux 6 random reservations Heuristic {120, 121...,130} 110 123 122 121 119 pucity. \
7 random reservations Heuristic (120, 121...,124} 110 122 121 121 120 1 network problems (linear program
where 8 random reservations Transformed {120, 121...,130} 110 125 123 122 120 with O (mn T Tl) decision variables and
9 random reservations Transformed {120, 121...,124} 110 124 123 121 120 O(m+n+ 1) constraints.
The algorithm requires a sequence of step sizes, {by}, satisfying Y5 by = +0, Yo bz < +0; Then, 6 | | | | | | | | |
(Zlf ) Zn) = (Zl (u’l/\('xl + El))! ) Zn (un/\(xn + En))) the algorithm proceeds as follows: \‘ - heunsie
Step 0. Initialize: k = 1 and u* = x. T
n m ‘a\
Step 1. Get the stochastic gradient: 4t |
VO (Z) = Imax aijyl-j
- - e Randomly generate a new vector £X. 5 |
1=1 j=0 Sar
e Randomly generate a new vector Z (uk/\ (x + Ek)).
m . e Compute the gradient estimate Dk, 2
S.t. Z]=0 yl] = Zl’ I = 1, ven n, B //‘_\\‘ //\\ P ;\
Step 2. Compute the u**1 = [J(u* + b, D¥*), where [](") is the projection of u* + b, D¥ onto L \/ \\“ VA S 4 '\\
{u:u > x}. \ N \\‘ \\
7.1' . . < . 1 S— | | | \\J/“ | | 1 | ' J| \;‘\L/,»_[ \\.\
1=1 yl] - C]'] 0’ -, M, Step 3. Set k := k + 1 and GOTO Step 1. %0 02 04 06 08 1 12 14 16 18 >
number of iterations «10°
>0i=1 =0 ORI LOa S DRy (Volat +e0) - o (2h), $i > Ui X Figure 1. Performance Comparison with Heuristic!!l
y ij = t=4L.,n, J=Y, ., M. l min {0,7; — q;(1 —p;) +p; (Vo (z¥+e;) - Vo(zi‘))}, § <u—x; *Due to the noises, the overbooking limits are averaged every
20,000 1iterations
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