

Photosensitive Poly(o-nitrobenzyloxycarbonyl-L-lysine)-bPEO Polypeptide Copolymers: Synthesis, Multiple Self-Assembly Behaviors, and the Photo/pH-Thermo-Sensitive Hydrogels Jiacheng Zhang, Chang-Ming Dong* Zhiyuan College, Shanghai Jiao Tong University

Introduction

- Owing to their good biocompatibility, multiple stimuliresponse and three-dimensional networks mimicking the extracellular matrix, supramolecular hydrogels are being extensively investigated for use as drug/gene/protein delivery systems, injectable tissue engineering scaffolds, and smart actuators.
- Light is becoming a practical tool to tune the physical and biological properties of polymers and hydrogels in a spatiotemporal manner, however, the fabrication of photoresponsive polypeptide-based hydrogels with stronger and tunable mechanical properties is still challenging.
- To enhance the mechanical properties and endow the photosensitivity of the polypeptide hydrogels we have for the first time synthesized a photosensitive poly(onitrobenzyloxycarbonyl-L-lysine)-b-poly(ethylene glycol) (PNBLb-PEO) block copolymer and fabricated three kinds of dualsensitive (i.e., photo/pH-thermo) polypeptide normal and reverse micellar hydrogels via the physical cross-linking of micelles.

(a) Photo-Thermo-sensitive NMH

(b) pH-Thermo-sensive NMH

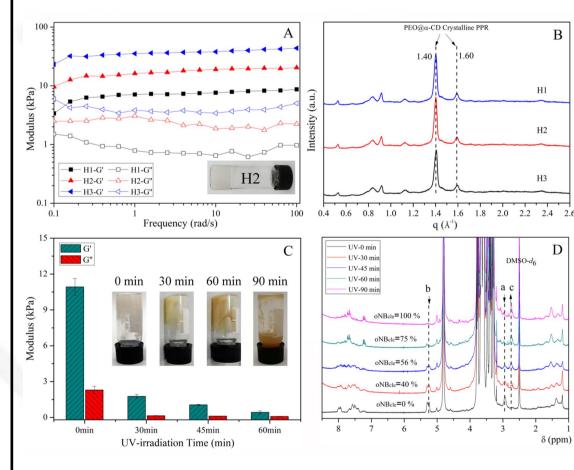
(c) pH-Thermo-sensive RMH

Scheme 1 Schematic illustration of the proposed structures and gelation process of supramolecular hydrogels: (a) photo-thermo-sensitive NMH; (b) pH-thermosensitive NMH; (c) pH-thermo-sensitive RMH. Conditions: (1) and (3) normal micelles, and (5) the reverse micelles; (2) and (4) normal micellar hydrogels (NMH), and (6) the reverse micellar hydrogel (RMH).

Conclusion

A series of photosensitive PNBL-b-PEO block copolymers were synthesized successfully, which exhibited fast photocleavage and photosensitive self-assembly behaviors in methanol and in aqueous solutions. Using the self-assembled polypeptide normal micelles or the reverse micelles as the cross-linking units, three kinds of supramolecular photo/pH-thermo-sensitive polypeptide normal and reverse micellar hydrogels were easily fabricated at a low copolymer concentration of 1-2wt% with different α -CD concentrations of 4.2–14.4 wt%, in which the multiple self-assembly and hydrogelation behaviors were studied thoroughly. Importantly, these dualstimuli-sensitive polypeptide hydrogels have a higher storage modulus of 10–105 kPa, while the mechanical modulus can be further tuned by varying the UVirradiation time, the amount of α -CD added, and the copolymer concentration.

Thermo-sensitive


首届致远学术节

学生科研成果展示

Table 1. The parameters for the polypeptide micellar hydrogels.

Hydrogel	Copolymer	C _{poly} (wt%)	$C_{\alpha-CD} (wt\%)$	$R_{\alpha-CD}$	рН	T _{gel} (°C)	
H1	PNBL ₉ -b-PEO	1.0	4.2	0.6	7.5	56.9	
H2	PNBL ₉ -b-PEO	1.0	5.6	0.8	7.5	64.7	
H2'	PNBL ₉ -b-PEO	2.0	11.2	0.8	7.5	84.5	
H3	PNBL ₉ -b-PEO	1.0	7.0	1.0	7.5	68.0	
H4	PNBL ₉ -b-PEO	1.0	5.6	0.8	3.0	63.3	
Н5	PLys ₉ -b-PEO	1.0	7.2	0.8	10.0	63.8	
Н5'	PLys9-b-PEO	2.0	14.4	0.8	10.0	71.2	
Н6	PLys9-b-PEO	1.0	7.2	0.8	3.0→10.0	53.6	
H6'	PLys ₉ -b-PEO	2.0	14.4	0.8	3.0→10.0	65.9	

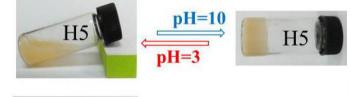

Photo-sensitive

Figure 2. The storage (G') and (G'') loss modulus as a function of frequency for hydrogels H1-H3 (A). WAXD patterns for the xerogels H1-H3 (B). Changes in G' and G" of hydrogel H4 after different UVirradiation times (C). Photocleavage percentage of oNB groups in hydrogels tracked by 1H NMR

spectroscopy (D).

pH-sensitive

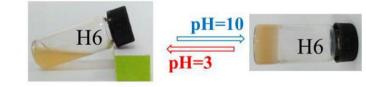


Figure 3. The gel-sol transition occurs when the pH changes in the htdrogel H5/H6.

个人信息:2014级,化学 箱: zhangjiacheng14@sjtu.edu.en Reference: **由** 1.Li P, Zhang J, Dong C M. Polymer Chemistry, 2017, 8(45): 7033-7043. 意知过学院上海交通大学致远荣誉计划